Để \(A\in Z\Leftrightarrow\left(n+8\right)⋮\left(2n-5\right)\)
Giả sử\(\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2n+16⋮\left(2n-5\right)\)
\(\Leftrightarrow2n-5+21⋮\left(2n-5\right)\)
Do \(2n-5⋮2n-5\)
\(\Rightarrow21⋮\left(2n-5\right)\)
\(\Rightarrow\left(2n-5\right)\inƯ\left(21\right)\)
Ta có bảng sau:
2n-5 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
2n | -16 | -2 | 2 | 4 | 6 | 8 | 12 | 26 |
n | -8 | -1 | 1 | 2 | 3 | 4 | 6 | 13 |
Do \(n\inℕ^∗\Rightarrow n\in\left\{1;2;3;4;6;13\right\}\)