Chứng minh :
((5n+2)^2-4) chia hết cho 5 với n thuộc Z
(n^3-n) chia hết cho 6 vs n thuộc Z
a^3+b^3+c^3 = 3abc với a+b+c=0
Chứng minh:
a) n^5 - 5n^3 + 4n chia hết cho 120 ( với mọi n thuộc Z )
b) n^3 - 3n^2 - n + 3 chia hết cho 48 ( với n lẻ )
Chứng minh rằng :
a. (n3 - n) chia hết cho 6 với n thuộc N
b. (n5 - n) chia hết cho 5 với n thuộc z
c. (n5 - 5n3 + 4n) chia hết cho 120 với n thuộc z
Chứng minh rằng với mọi n thuộc Z thì f(n) = n^5 - 5n^3 + 4n chia hết 120
Chứng minh rằng:
(5n - 2)2 - (2n - 5)2 luôn chia hết cho 21 với n thuộc Z
chứng minh rằng:
(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2) +4 chia hết cho 5, với mọi n
Chứng minh với mọi n thuộc Z thì:
a, n^7 -n chia hết cho 7
b, 2n^3+3n^2+n chia hết cho 6
c, n^5-5n^3+4n chia hết cho 120
d,n^3-3n^2-n+3 chia hết cho 48
CÁC BN GIÚP MIK VS NHA!!! CẢM ƠN NHÌU NHÌU NEK!!!>3<!!!
cmr với mọi n nguyên thì (5n-1)(n+3)-9n+3 chia hết cho 10
chứng minh rằng : \(5n^3+15n^2+10\)chia hết cho 30
chứng minh rằng \(3^{4n+4}-4^{3n+3}\)chia hết cho 17 (n thuộc N)