Vì \(n\left(n-1\right)⋮2\left(1\right)\)
\(\left(n-1\right)\left(n-2\right)⋮3\left(2\right)\)
Từ (1) và (2) suy ra:\(n\left(n-1\right)\left(n-2\right)⋮6\)
Vì \(n\left(n-1\right)⋮2\left(1\right)\)
\(\left(n-1\right)\left(n-2\right)⋮3\left(2\right)\)
Từ (1) và (2) suy ra:\(n\left(n-1\right)\left(n-2\right)⋮6\)
Cho n thuộc Z .Chứng tỏ A= n(n-1)(n-2) chia hết cho 6
chứng tỏ
A=n(n+1)(n+2)-18n chia hết cho 6 (n thuộc Z)
1 Chứng tỏ rằng:
a)(n^2+n) chia hết cho 2 (với mọi n thuộc z)
b) (n^2+n+3) ko chia hết cho 2(với mọi n thuộc z)
2)Cho x;y thuộc z .Chứng minh rằng (5x+47y) chia hết cho 17 khi và chỉ khi (x+6y) chia hết cho 17
Help Me!
2.Chứng tỏ n thuộc Z thì A=n^3-7n chia hết cho 6
1.cho A=n2+n+6. chứng tỏ A chia hết cho 5 với mọi n thuộc N
2.chứng tỏ với mọi n thuộc N thì (2x+1+2x+2+......+2x+40) chia hết cho 30
Chứng tỏ : A= 5n ( n+1) (n+2) chia hết cho 30 với n thuộc Z
chứng tỏ;n^3-n chia hết cho 6(n thuộc Z)
Chứng tỏ rằng với n thuộc Z thì
a. (n-1)(n+2) +12ko chia hết cho 9
b.(n+2)(n+9)+21 ko chia hết cho 49
Chứng tỏ n thuộc Z thì A = n^3 - 7n chia hết cho 6