1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
chứng minh rằng n^3 - n chia hết cho 24 với n lẻ
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho n là số tự nhiên lẻ. Chứng minh rằng \(24^n+1\)chia hết cho 25 nhưng ko chia hết cho 23
Chứng minh rằng A=11.12.13.14+21.22.23.24.25 chia hết cho 5,9,15,77
Chứng minh rằng B=(2012^9+2012^8+2012^7-2012^6) chia hết cho 2013
Chứng minh rằng A= 7+7^2+7^3+…+7^2000 chia hết cho 8
Tìm n thuộc tập hợp N để
a, n+6 chia hết cho n b,4n+5chia hết cho n. c, n+5 chia hết cho n+1. đ, 3n + 4 chia hết cho n-1
CMR với n lẻ thì
a, n2+4n+3 chia hết cho 8
b. n3+3n2-n-3 chia hết cho 48
c, n12-n8-n4+1 chia hết cho 512
Chứng minh rằng với n thuộc N* a) 8.2^n+2^n+1 có tận cùng bằng chữ số 0 b) 3^n+3 - 2.3^n - 7.2^n chia hết cho 25 c) 4^n+3 + 4^n+2 - 4^n+1 - 4^n chia hết cho 300
bài 1: cm
a,n^3+11n chia hết cho 6 vs nEN
b,n^3+17n chia hết cho 6 vs nEN
c,n^3+3n^2-n-3 chia hết cho 48 vs n là số lẻ
d,n^4-4n^3-4n^2+16n chia hết cho 384 vs là số chẵn lớn hơn 4
chứng minh rằng 8(n^3)+40n chia hết cho 48