Cho n là số tự nhiên. Chứng minh rằng.
1/(n+10)(n+15) chia hết cho 2
2/n(n+1)(n+2) chia hết cho 2&3
Cho n là số tự nhiên. Chứng minh rằng :
a) (n + 10)(n + 2) chia hết cho 2 và 3
b) n(n + 1)(2n + 1) chia hết cho 2 và 3
cho n là số tự nhiên. chứng minh rằng
a) ( n+10*(n+15) chia hết cho 2
b) n*( n+1) * ( n+2) chia hết cho cả 2 và 3
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
Cho n là số tự nhiên, chứng minh rằng :
a) (n+ 10)(n + 15) chia hết cho 2
b) n(n+ 1)(n+2) chia hết cho cả 2 và 3
c) n(n + 1)(2n + 1) chia hết cho 2 và 3
Cho n là số tự nhiên, chứng minh rằng :
a) (n+ 10)(n + 15) chia hết cho 2
b) n(n+ 1)(n+2) chia hết cho cả 2 và 3
c) n(n + 1)(2n + 1) chia hết cho 2 và 3
Bài 1: Chứng minh rằng 2002n -138n-1 chia hết cho 207 với mọi số tự nhiên n
Bài 2: Cho số tự nhiên n và n-1 không chia hết cho 4. CHứng minh rằng 7n + 2 không thể là số chính phương
Bài 3: Chứng minh rằng dãy 2n - 3 ( n>1) có vô số số hạng chia hết cho 5 và vô số số hạng chia hết cho 13 nhưng không có số hạng nào chia hết cho 65.
Bài 1.Tìm số tự nhiên n sao cho: 2n + 7 chia hết cho n + 2
Bài 2.Chứng minh rằng:
a/ Với mọi số tự nhiên n thì (n+3)(n+10) chia hết cho 2
b/ Với mọi số tự nhien n thì (n+3)(n+6) chia hết cho 2
c/ Với mọi số tự nhiên n thì (5n+7)(4n+6) chia hết cho 2
(n+7).(n+10) và m.n.(m-n) trong đó m,n là số tự nhiên
b) Tìm số tự nhiên n khi n2 chia hết cho 3
2. chung to rằng
109+2 chia hết cho 31010-1 chia hết cho 9