Bài này là đề tuyển sinh vào 10 của hà nội năm 2012 nếu mình không nhớ nhầm.
Bạn tìm trên mạng nhé.
Bài này là đề tuyển sinh vào 10 của hà nội năm 2012 nếu mình không nhớ nhầm.
Bạn tìm trên mạng nhé.
cho n là số tự nhiên thỏa mãn:
\(2+2\sqrt{1+12n^2}\)
chứng minh rằng:\(2+2\sqrt{1+12n^2}\)là số chính phương
Do a,n là số nguyên dương thỏa mãn \(a=2+2\sqrt{28n^2+1}\),. Chứng minh a là số chính phương
Cho A=\(2+2\sqrt{12n^2+1}\)( với n là số tự nhiên).Chứng minh rằng nếu A là số tự nhiên thì A là số chính phương
cho m;n là các số tự nhiên thỏa mãn \(4m^3+m=12n^3+n\)chứng minh m-n là lập phương của 1 số nguyên
Chứng minh rằng nếu T= \(2+2\sqrt{12n^2+1}\) là số tự nhiên thì T là số chính phương
Cho a,b,c là các số nguyên dương thỏa mãn điều kiện \(\sqrt{a}+\sqrt{b}=\sqrt{c}\). CMR nếu a,b là 2 số nguyên tố cùng nhau thì a,b,c đều là các số chính phương
Cho các số nguyên dương a,b thỏa mãn ab+1 là số chính phương. Chứng minh rằng tồn tại số nguyên dương c sao cho ac+1 và bc+1 cùng là số chính phương
Cho các số nguyên dương a,b,c,d thỏa mãn \(a< b\le c< d;ad=bc;\sqrt{d}-\sqrt{a}\le1\). Chứng minh rằng a là 1 số chính phương
Cmr:Nếu T=2+2\(\sqrt{12n^2+1}\)\(\in\)N thì T là số chính phương