Cho n chẵn. Chứng tỏ rằng cả hai số tự nhiên n3 -4n và n3+4n đều chia hết cho 16
Mọi người giúp em với ạ! Em cảm ơn <3 !
Chứng minh số có dạng (n^4-4n^3-4n^2+16n) chia hết cho 384 với n là số tự nhiên chẵn và lớn hơn 4
1/ Chứng minh n5-5n3+4n chia hết cho 120 với mọi số nguyên n
2 / Chứng minh rằng n3+3n2+n+3 chia het chi 48 với mọi số lẽ n
3/ CMR n^4+4n3-4n2-16n chia hết cho 384 với mọi số nguyên n
a) Chứng minh rằng với mọi số tự nhiên n chẵn thì: (n4 -4n3 -4n2 +16n)chia hết cho 384;
b) với n là số nguyên dương, rút gọn:
A=(1+1/3)(1+1/8)(1+1/15)....(1+1/(n2+2n))
Chứng minh rằng:
n^4 - 4n^3 4n^2 + 16n chia hết cho 384 với mọi số tự nhiên n chẵn.
P/s: KHÔNG có n > 4
Chứng minh rằng với mọi số tự nhiên n chẵn thì: (n4 -4n3 -4n2 +16n)chia hết cho 384
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)