Cho N = dcba (gạch trên đầu dcba) , chứng minh rằng:
a/ N chia hết cho 4 <=> a+2b chia hết cho 4
b/ N chia hết cho 8 <=> a+2b+4c chia hết cho 8
c/ N chia hết cho 16 <=> a+2b+4c+8d chia hết cho 16 (b chẵn)
ta có số A = dcba .
Chứng tỏ rằng : nếu {a + 2b] chia hết cho 4 thì A chia hết cho 4.
cho số N = dcba . chứng minh N chia hết cho 4 biết a + 2b chia hết cho 4
cho A = dcba ( a thuộc N )
a) chứng minh A chia hết cho 4 khi và chỉ khi ( 2b + a ) chia hết cho 4
b) chứng minh a chia hết cho 8 khi và chỉ khi ( a+ 2b +4c ) chia hết cho 8
cho n =dcba
chứng minh rằng
a, n chia hết cho 4 <=> a+2b chia het cho 4
b, n chia hết cho 8 <=> a+2b+4c chia hết cho 48
n chia hết cho 16 <=> a+2b+ 4c +8d chia hết cho 16 và b là số chẵn
cho số N = dcba . chứng minh N chia hết cho 4 biết a + 2b chia hết cho 4
cho A = dcba ( a thuộc N )
a) chứng minh A chia hết cho 4 khi và chỉ khi ( 2b + a ) chia hết cho 4
b) chứng minh a chia hết cho 8 khi và chỉ khi ( a+ 2b +4c ) chia hết cho 8
Cho A = dcba
Chứng minh rằng nếu (a + 2b) chia hết cho 4 thì A chia hết cho 4.
Cho N=dcba . CMR :
a) N chia hết cho 4 (=) (a+2b) chia hết cho 4 .
b) N chia hết cho 16 (=) (a+2b+4c+8d) chia hết chố với b chẵn .
c) N chia hết cho 29 (=) (d+2c+9b+27a) chia hết cho 29