a) \(M=\frac{x}{x+1}+\frac{1}{x-1}-\frac{2x}{1-x^2}\left(x\ne\pm1\right)\)
\(\Leftrightarrow M=\frac{x}{x+1}+\frac{1}{x-1}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow M=\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
Vậy \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
b) \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
x-2=1
<=> x=3 (tmđk)
Thay x=3 vào M ta có: \(M=\frac{3+1}{3-1}=\frac{4}{2}=2\)
Vậy M=2 khi x-2=1
c) \(M=\frac{x+1}{x-1}\left(x\ne\pm1\right)\)
M nguyên khi x+1 chia hết cho x-1
=> x-1+2 chia hết cho x-1
x nguyên => x-1 nguyên => x-1 thuộc Ư (2)={-2;-1;1;2}
Ta có bảng
x-1 | -2 | -1 | 1 | 2 |
x | -1 | 0 | 2 | 3 |
ĐCĐK | ktm | tm | tm | tm |
Vậy x={0;2;3}