Tìm số nguyên n biết n5+1 chia hết cho n3+1
2)Cho m là số nguyên.Chứng minh rằng 4*m3+9*m2-19*m-30 chia hết cho 6
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1) Chứng tỏ rằng :(17^n+1)(17^n+2)chia hết cho 3 với mỗi n thuộc N
2)Chứng tỏ rằng : (9^m+9)(9^m+2)chia hết cho 5 với mỗi m thuộc N
1, Thực hiện phép tính bằng cách hợp lý:
A=(1)/(2)-(2)/(5)+(1)/(3)+(5)/(7)-(-1)/(6)+(-4)/(35)+(1)/(41)
2, Chứng minh rằng:
a, 1+4+4^2+4^3+...+4^99 chia hết cho 5
b, 3^n+2-2^n+2+3^n-2^n chia hết cho 10 (với n thuộc N*)
Cho hai số tự nhiên m, n thỏa mãn: 24.m4+1=n2
Chứng minh rằng: m.n chia hết cho 5
Bài 2:
1.Chứng minh rằng : 9999931999 - 555551997 chia hết cho 5
2.Chứng minh rằng : 1725 - 1321 + 244 Chia hết cho 10
3. Chứng minh rằng: 172008 - 112008 - 32008 + 1 chia hết cho 10
Chứng tỏ rằng: (5 + 5^2 + 5^3 + 5^4 + 5^5 + ... + 5^29 + 5^30) chia hết cho 6
(a + a^2 + a^3 + a^4 + ... + a^29 + a^30) chia hết cho (a + 1),(a thuộc N)
(3 + 3^2 + 3^3 + 3^4 + 3^5 + ... + 3^29 + 3^30) chia hết cho 4
Bài 1:Cho n\(\in\)N, Chứng minh:
a, 62n+1+5n+2 chia hết cho 3
b, 34n+1+3.10-13 chia hết cho 64
c, 62n+3n+2+3n chia hết cho 11
Bài 2: Cho m;n\(\in\)Z. Chứng minh: m.n.(m4-n4) chia hết cho 30.
Bài 3: Cho S=a13+a23+...+an3
P=a1+a2+...+an
(a1\(\in\)Z; i=1,n)
Chứng minh: S chia hết cho 6\(\Leftrightarrow\)P chia hết cho 6