Giúp cai nka tối mik phải đi học
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Giúp cái nha chiều đi học rồi
1 nếu m, n là các số tự nhiên thỏa mãn 2m^2+m=3n^2+n thì m- n là số nguyên tố
2 chứng minh với n thuộc Z chẵn và n >4 thì n^4-4n^3-16n^2+16 chia hết cho 383
3 cho a, b là số chính phương lẻ. chứng minh (a-1((b-1) chia hết cho 192
4 tìm nghiệm nguyên tố của phương trình x^2- 2y= 1
Chứng minh rằng nếu m,n là các số tự nhiên thỏa mãn: \(4m^2\)+ m = \(5n^2\) + n thì:
m - n và 5m + 5n + 1 là số chính phương.
Chứng minh rằng nếu m, n là số tự nhiên thỏa mãn: \(4m^2+m=5n^2+n\) thì \(m-n\)và \(5m+5n+1\)đều là số chính phương
Chứng minh rằng:
a) Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
b) Nếu số n là tổng của hai số chính phương thì n\(^2\) cũng là tổng của hai số chính phương
c) Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
Cho K = m^2n^2 − 4m − 2n, ∀m, n ∈ N∗
.
a) Khi n = 2, tìm m để K là số chính phương.
b) Khi n > 5, chứng minh rằng K không thể là số chính phương.
Chứng minh rằng :Nếu 2n+1 và 3n+1(n thuộc N) đều là các số chính phương thì n chia hết cho 40
Cho m ,n là 2 số tự nhiên thỏa mãn 4m2 +m = 5n2 +n. Chứng minh rằng m-n và 5m+5n +1 là số chính phương