cho x, y là các số thực dương thỏa mãn x+y=4
tìm GTNN của : \(M=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
1/tìm số n nguyên dương thỏa mãn
\(\sqrt{\left(3+2\sqrt{2}\right)^n}+\sqrt{\left(3-2\sqrt{2}\right)^n}=6\)
2/ cho a, b là các số dương thỏa mãn \(1\le a\le b\le2\)
tìm GTLN của \(A=\frac{a}{b}+\frac{b}{a}\)
Tìm số nguyên dương n lớn nhất để bất đẳng thức sau thỏa mãn
\(\frac{1}{\sqrt[n]{\left(na+b+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+nb+c\right)^4}}+\frac{1}{\sqrt[n]{\left(a+b+nc\right)^4}}\le\frac{3}{16}\)
trong đó a,b,c là các số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\)
a, Tìm tất cả các giá trị nguyên của x để A=\(\frac{x^4+x^2+x+2}{x^4+3x^3+7x^2+3x+6}\) cũng là số nguyên.
b, Cho các số dương a,b,c thỏa mãn: a+b+c=4. Tìm GTNN của biểu thức
P=\(\frac{a\sqrt{a}}{\sqrt{a}+3\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{b}+3\sqrt{c}}+\frac{c\sqrt{c}}{\sqrt{c}+3\sqrt{a}}\)
cho a,b là các số dương thỏa mãn: a+b+c=3
Tìm GTNN của M=\(\sqrt{a^2+ab+b^2}\)+\(\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)
cho m,n là các số thỏa mãn đ.k mn=1/2
tìm GTNN của P=\(\frac{m^2+n^2}{m^2n^2}+\frac{m^2n^2}{m^2+n^2}\)
Cho các số nguyên dương m,n thỏa mãn: m3+n3=m chia hết cho mn. CMR m là lập phương của 1 số nguyên dương
1. Cho a,b,c nguyên dương sao cho (a-b)(a-c)(b-c)=a+b+c. Tìm GTNN M=a+b+c
2. Tìm n nguyên để \(A=\sqrt{\frac{25}{2}+\sqrt{\frac{625}{4}-n}}+\sqrt{\frac{25}{2}-\sqrt{\frac{625}{4}-n}}\)là số nguyên
3. Cho a,b,c dương. CMR \(\frac{a^3b}{3a+b}+..\)(hoán vị) \(\ge hoánvị\frac{a^2bc}{2a+b+c}\)
Cho a,b,c là các số thực dương thỏa mãn ab+2bc+2ca=6. Tìm GTNN của Q=\(\frac{11a+11b+12c}{\sqrt{8a^2+48}+\sqrt{8b^2+48}+\sqrt{4c^2+6}}\)