\(4.\left|x-3\right|=\left|-12+24\right|\)
\(4.\left|x-3\right|=\left|12\right|\)
\(\left|x-3\right|=\left|12\right|:4\)
\(\left|x-3\right|=3\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3\right|=3\\\left|x-3\right|=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}}\)
Vậy ...
4.|x-3|=12
|x-3|=12/4=3
\(\Rightarrow\)x-3=3 hoặc x-3=-3
*x-3=3
x=6
*x-3=-3
x=0
4.lx-3l=l-12+24l => 4.lx-3l= 12
=> lx-3l= 3
=> \(\orbr{\begin{cases}x-3=3\\x-3=-3\end{cases}=>\orbr{\begin{cases}x=6\\x=0\end{cases}}}\)
4.| x-3| = 12
|x-3|=12: 4
|x-3|= 3
x-3 = 3
x = 3 + 3
x = 6
cho mk thêm : Vì x-3 có dấu giá trị tuyệt đối => ta có 2 trường hợp,đó là x-3 = 3 hoặc -3 . Ta có trường hợp 1 trên...
Trường hợp 2,ta có : x-3 = -3 => x= 0
Vậy ta có x thuộc { 0;6 }