\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}.\frac{2018}{2019}\)
\(=\frac{2018}{4038}\)
\(\Rightarrow\frac{2018}{4038}< \frac{1}{2}\)( lấy máy tính )
\(M=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2017.2019}\)
\(\Rightarrow M=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......-\frac{1}{2017}+\frac{1}{2017}-\frac{1}{2019}\)
\(\Rightarrow M=1-\frac{1}{2019}\)
\(\Rightarrow M=\frac{2019}{2019}-\frac{1}{2019}\)
\(\Rightarrow M=\frac{2018}{2019}\)
Có \(\frac{2018}{2019}=\frac{2018.2}{2019.2}=\frac{4036}{4038}\)
\(\frac{1}{2}=\frac{1.2019}{2.2019}=\frac{2019}{4038}\)
Mà \(\frac{4036}{4038}< \frac{2019}{4038}\Rightarrow M< \frac{1}{2}\)
Vậy M < \(\frac{1}{2}\)