M ∈ d ⇒ M(12 + 4t; 9 +3t; 1 + t).
M ∈ α ⇒ 3.(12 + 4t) + 5.(9 + 3t) – (1 + t) – 2 = 0
⇔ 26t + 78 = 0.
⇔ t = -3.
⇒ M(0; 0; -2).
M ∈ d ⇒ M(12 + 4t; 9 +3t; 1 + t).
M ∈ α ⇒ 3.(12 + 4t) + 5.(9 + 3t) – (1 + t) – 2 = 0
⇔ 26t + 78 = 0.
⇔ t = -3.
⇒ M(0; 0; -2).
Cho mặt phẳng α : 3x+5y-z-2=0 và đường thẳng d : x = 12 + 4 t y = 9 + 3 t z = 1 + t Gọi M là tọa độ giao điểm của đường thẳng d và mặt phẳng α . Viết phương trình mặt phẳng (P) chứa điểm M và vuông góc với đường thẳng d
Cho mặt phẳng (α) có phương trình: 3x + 5y - z - 2 = 0 và đường thẳng d có phương trình: x = 12 + 4 t y = 9 + 3 t z = 1 + t
Viết phương trình mặt phẳng β chứa điểm M và vuông góc với đường thẳng d.
Trong không gian Oxyz, cho mặt phẳng ( α ) : 3 x + y + z = 0 và đường thẳng △ : x - 3 1 = y + 4 - 2 = z - 1 2 . Phương trình của đường thẳng d nằm trong mặt phẳng ( α ) , cắt và vuông góc với đường thẳng △ là
Cho mặt phẳng ( α ) : 2x + y + z – 1 = 0 và đường thẳng d: x - 1 2 = y 1 = z + 1 - 3
Gọi M là giao điểm của d và ( α ), hãy viết phương trình của đường thẳng ∆ đi qua M vuông góc với d và nằm trong ( α )
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Viết phương trình tham số của đường thẳng d là giao của (α) và ( β)
Trong không gian tọa độ Oxyz cho đường thẳng △ có phương trình x - 1 2 = y + 1 - 1 = z 2 và mặt phẳng ( α ) có phương trình x+y-z-2=0 Tính côsin của góc tạo bởi đường thẳng △ và mặt phẳng ( α )
Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng d có phương trình: x - 12 4 = y - 12 5 = z - 1 4 và mặt phẳng (P): 3x + 5y - z = 0. Tìm toạ độ giao điểm của đường thẳng d và mặt phẳng (P).
A. (1;0;1)
B. (1;1;6)
C. (12;0;9)
D. (0;0;2)
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng ( α ) : x + y + z - 2 = 0 Đường thẳng nằm trong mặt phẳng ( α ) , đồng thời vuông góc và cắt đườn thẳng d có phương trình là
Trong không gian Oxyz cho mặt phẳng (α) có phương trình 4x + y + 2z + 1 =0 và mặt phẳng ( β) có phương trình 2x – 2y + z + 3 = 0
Tìm điểm N' là ảnh của N(0; 2; 4) quá phép đối xứng qua đường thẳng d.