Cho mặt cầu S (O;R) và (P) cách O một khoảng bằng h (0 <H<R) . Gọi (L) là đường tròn giao tuyến của mặt cầu (S) và (P) có bán kính r. Lấy A là một điểm cố định thuộc (L). Một góc vuông xAy trong (P) quay quanh điểm A. Các cạnh Ax, Ay cắt (L) ở C và D. Đường thẳng đi qua A và vuông góc với (P) cắt mặt cầu ở B. Diện tích tam giác BCD lớn nhất bằng:
Cho hình nón có đường sinh bằng đường kính đáy và bằng 2. Bán kính của mặt cầu ngoại tiếp hình nón đó là
Trong không gian a và b có thể cắt nhau và cùng thuộc mặt phẳng song song với mặt phẳng đã cho.
Một hình cầu có bán kính bằng 2(m). Hỏi diện tích của mặt cầu bằng bao nhiêu
A. 4 π ( m 2 )
B. 16 π ( m 2 )
C. 8 π ( m 2 )
D. π ( m 2 )
Hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, SA ⊥ (ABCD) tạo với mặt đáy một góc 45 0 . Mặt cầu ngoại tiếp hình chóp S. ABCD có bán kính bằng a 2 . Thể tích khối chóp S. ABCD bằng:
Cho tứ diện ABCD có ABC là tam giác cân tại A, người ta để một quả cầu có bán kính r = 1 vào bên trong tứ diện từ đáy ABC sao cho các cạnh AB, BC, CA lần lượt tiếp xúc với quả cầu và phần quả cầu bên trong tứ diện có thể tích bằng phần quả cầu bên ngoài tứ diện. Biết khoảng cách từ D đến (ABC) bằng 2. Tính thể tích nhỏ nhất của tứ diện ABCD?
Cho mặt cầu có diện tích bằng 8 πa 2 3 , bán kính của mặt cầu bằng
Một hình trụ có hai đường tròn đáy nằm trên một mặt cầu bán kính R và có đường cao bằng bán kính mặt cầu. Diện tích toàn phần hình trụ đó bằng
Một hình trụ có hai đường tròn đáy nằm trên một mặt cầu bán kính R và có đường cao bằng bán kính mặt cầu. Diện tích toàn phần hình trụ đó bằng
Cho hình cầu (S) tâm I bán kính R. Một mặt phẳng (P) cắt mặt cầu (S) theo đường tròn giao tuyến (L). Khối nón đỉnh I và đáy là đường tròn (L) có thể tích lớn nhất là a π R 3 b 3 ( a , b ∈ N ) . Hỏi a+ b bằng?
A. 10
B. 9
C. 11
D. 13