Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha
a) cho n thuộc N; n không chia hết cho 3 ; chứng minh n2-1 chia hết cho 3
b) cho p là số nguyên tố lớn hơn 3 hỏi p2+2003 là số nguyên tố hay hợp số
câu a: cho n thuộc N*, biet a^n chia hết cho 5, chứng minh rằng n^2 chia cho 3 dư 1.
Câu b : cho p là 1 số nguyên tố lớn hơn 3. Hỏi p^2 + 2003 là số nguyên tố hay hợp số?
Bài 1:
a) Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và hiệu của hai số nguyên tố
b) Cho P là số nguyên tố lớn hơn 3, biết P + 2 cũng là số nguyên tố. Chứng minh rằng P + 1 chia hết cho 6
c) Cho N là số nguyên tố lớn hơn 3. Hỏi N2 + 2018 là số nguyên tố hay hợp số. Vì sao?
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N+ 1 LÀ 2 SỐ GUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N-1 ) ( N + 1 ) ( N + 3 ) ( N + 5 ) CHIA HẾT CHO 384
C, VỚI A ,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 ,P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
cho a và 6 là số nguyên tố cùng nhau, c thuộc tập hợp số tự nhiên. ab= c^2. Chứng minh rằng a và b là các số chính phương
1.Không tính kết quả cụ thể hãy xét các tổng hiệu sau là số nguyên tố hay hợp số
a) A=13.15.19+21.27.23
b) B=5.7.9.11-10.17.4
2. chứng minh 2 số sau là số nguyên tố cùng nhau
5n+9 và 4n+7 (n thuộc N)
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N + 1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N - 1 ) ( N + 1 ) ( N+ 3 ) ( N+ 5 ) CHIA HẾT CHO 384
C, VỚI A,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 , P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
GIÚP MÌNH VỚI