Ta có \(M=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{28}.\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{28}\right)⋮13\Rightarrow M⋮13\)
M = 31 + 32 + 33 +...+ 328 + 329 + 330
M = ( 31 + 32 + 33) + ...+ ( 328 + 329 + 330 )
M = 3(1 + 3 + 32 ) +...+ 328( 1 + 3 + 32)
M = 3 .13 +...+ 328.13
\(\Rightarrow M⋮13\)(đpcm)
!!!
Ta có \(M=3^1+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)
\(=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)
\(=3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{28}.\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{28}.13\)
\(=13.\left(3+3^4+..+3^{28}\right)\) chia hết cho 13.
Vậy M chia hết cho 13
\(M=3^1+3^2+3^3+...+3^{28}+3^{29}+3^{30}\)
\(M=3^1.\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^{28}\left(1+3+3^2\right)\)
\(M=3^1.13+3^3.13+...+3^{28}.13\)
\(M=13.\left(3^1+3^3+...+3^{28}\right)\)
\(\Rightarrow M⋮13\)