Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồng Hạnh Phạm

Cho m, n là 2 số chính phương lẻ liên tiếp. Chứng minh mn-m-n+1 chia hết cho 192

Phạm Thanh Hà
1 tháng 5 2021 lúc 13:41

m=(2k+1)2;n=(2k+3)2m=(2k+1)2;n=(2k+3)2 (k thuộc N)

⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)

Do k;k+1;k+2k;k+1;k+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

⇒16k(k+2)(k+1)2⋮3⇒16k(k+2)(k+1)2⋮3

+ k chẵn ⇒k(k+2)⋮4⇒k(k+2)⋮4

+k lẻ ⇒(k+1)2⋮4⇒(k+1)2⋮4

⇒16k(k+2)(k+1)2⋮64⇒16k(k+2)(k+1)2⋮64

mn−m−n+1⋮192

Khách vãng lai đã xóa
Trần Anh Quân
1 tháng 5 2021 lúc 18:54
1/3.x+52/4=64/4
Khách vãng lai đã xóa
Bé Bò sữa gacha
3 tháng 5 2021 lúc 13:33
ai biết làm.....hem
Khách vãng lai đã xóa
Nguyễn VIP 5 sao
19 tháng 5 2021 lúc 21:21

m=(2k+1)2;n=(2k+3)2m=(2k+1)2;n=(2k+3)2 (k thuộc N)

⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)⇒mn−m−n+1=(2k+1)2.(2k+3)2−(2k+1)2−(2k+3)2+1=16k(k+2)(k+1)

Do k;k+1;k+2k;k+1;k+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

⇒16k(k+2)(k+1)2⋮3⇒16k(k+2)(k+1)2⋮3

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kurosaki Akatsu
Xem chi tiết
phan gia huy
Xem chi tiết
Nguyễn Thị Ngọc
Xem chi tiết
Nguyễn Minh Ánh
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Tran Thanh Huyen
Xem chi tiết
Nhân Trần Tiến
Xem chi tiết
Le Thi Khanh Huyen
Xem chi tiết
Bùi Hồng Anh
Xem chi tiết