Cho 1/M=1/(1+2+3) + 1/(1+2+3+4) +.....+ 1/(1+2+3+4+...+59)
Chứng minh rằng M>2/3
1) Cho
1/M=1/1+2+3+1/1+2+3+4+..+1/1+2+3+..+59
CMR M>2/3
Cho M=(1/1+2+3)+(1/1+2+3+4)+...+(1/1+2+3+...+59) . Chứng minh M<2/3
Bài 1:
a) C/m: A=2^1+2^2+2^3+2^4+....+2^2010 chia het cho 3 và 7
b) C/m: B=3^1+3^2+3^3+3^4+....+3^2010 chia het cho 4 va 13
c) C/m: C= 5^1+5^2+5^3+5^4+....+5^2010 chia het cho 6 va 31
d) C/m: D=7^1+7^2+7^3+7^4+....+7^2010 chia het cho 8 va 57
1/M=1/1+2+3+1/1+2+3+4+1/1+2+3+4+5+...+1/1+2+3+4+..+59
cmr M>2/3
1. Cho N=\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}\)
CMR \(\dfrac{3}{5}< N< \dfrac{4}{5}\)
2. Cho M=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{29}{3^{29}}-\dfrac{30}{3^{30}}\)
CMR \(M< \dfrac{3}{16}\)
3. Cho Q=\(\dfrac{2}{3}+\dfrac{8}{9}+\dfrac{26}{27}+...+\dfrac{3^{2021}-1}{3^{2021}}\)
CMR \(Q>\dfrac{4041}{2}\)
Cho \(M=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+59}\)
Chứng minh: M<2/3
cho M =1/1^2+1/2^2+1/3^2+...+1/10^2 so sanh M voi 4/3
M= \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+\(\dfrac{1}{1+2+3+...+59}\) CMR M<\(\dfrac{2}{3}\)