Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ko cần bít

Cho \(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)

Tính E = x + y

Không Tên
5 tháng 8 2018 lúc 7:38

Ta có:  \(\left(x+\sqrt{x^2+3}\right)\left(\sqrt{x^2+3}-x\right)=3\)

            \(\left(y+\sqrt{y^2+3}\right)\left(\sqrt{y^2+3}-y\right)=3\)

Kết hợp với giả thiết ta có:

\(\sqrt{x^2+3}-x=y+\sqrt{y^2+3}\)

\(\sqrt{y^2+3}-y=x+\sqrt{x^2+3}\)

Cộng theo vế ta được: \(-\left(x+y\right)=x+y\)

\(\Rightarrow\)\(E=x+y=0\)

Nguyễn Tất Đạt
5 tháng 8 2018 lúc 7:53

\(\left(x+\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\)

\(\Leftrightarrow\left(x+\sqrt{x^2+3}\right)\left(x-\sqrt{x^2+3}\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)

\(\Leftrightarrow\left(x^2-x^2-3\right)\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)

\(\Leftrightarrow-3\left(y+\sqrt{y^2+3}\right)=3\left(x-\sqrt{x^2+3}\right)\)

\(\Leftrightarrow-y-\sqrt{y^2+3}=x-\sqrt{x^2+3}\)(*)

Tương tự, nhân mỗi vế vs \(y-\sqrt{y^2+3}\), ta được:

\(-x-\sqrt{x^2+3}=y-\sqrt{y^2+3}\)(**)

Cộng (*) và (**) suy ra :

\(-y-x-\sqrt{y^2+3}-\sqrt{x^2+3}=x+y-\sqrt{x^2+3}-\sqrt{y^2+3}\)

\(\Leftrightarrow-y-x=x+y\Leftrightarrow2\left(x+y\right)=0\Leftrightarrow x+y=0\)

Vậy \(E=0.\)


Các câu hỏi tương tự
nguyen hung long
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Hương Nguyễn
Xem chi tiết
Ly Ly
Xem chi tiết
nguyễn hà quyên
Xem chi tiết
Thái Đàm Duy Anh
Xem chi tiết
nguyễn hà quyên
Xem chi tiết
Ly Ly
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết