Ta có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(x-\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow\left(x^2-\left(x+2018\right)^2\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2108\right)\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow-2018\left(y+\sqrt{y^2+2018}\right)=2018\left(x-\sqrt{x^2+2018}\right)\)
\(\Leftrightarrow-\left(y+\sqrt{y^2+2018}\right)=x-\sqrt{x^2+2018}\)
\(\Leftrightarrow-y-\sqrt{y^2+2018}=x-\sqrt{x^2+2018}\) (1)
Và có: \(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)\left(y-\sqrt{y^2+2018}\right)=2018\left(y-\sqrt{y^2+2018}\right)\)
\(\Leftrightarrow\left(x-\sqrt{x^2+2018}\right)\left(y^2-y^2-2018\right)=2018\left(y-\sqrt{y^2+2018}\right)\)
\(\Leftrightarrow-2018\left(x-\sqrt{x^2+2018}\right)=2018\left(y-\left(\sqrt{y^2+2018}\right)\right)\)
\(\Leftrightarrow-x-\sqrt{x^2+2018}=y-\sqrt{y^2+2018}\) (2)
Lấy (1) + (2) vế + vế ta được:
\(\left(-y-\sqrt{y^2+2018}\right)+\left(-x-\sqrt{x^2+2018}\right)=\left(x-\sqrt{x^2+2018}\right)+\left(y-\sqrt{y^2+2018}\right)\)
<=>\(-y-\sqrt{y^2+2018}+-x-\sqrt{x^2+2018}=x-\sqrt{x^2+2018}+y-\sqrt{y^2+2018}\)
<=> -y - x = x + y
<=> 2y - 2x =0
<=> -2(x+y)=0
<=> x + y =0
vậy x+y=0
cộng điểm cho mk nha!!!!!!!!!!