Cho biết \(\left(x+\sqrt{x^2+\sqrt{2013}}\right)\left(y+\sqrt{y^2+\sqrt{2013}}\right)=\sqrt{2013}\)
a) Chứng minh rằng : \(y+\sqrt{y^2+\sqrt{2013}}=-\left(x-\sqrt{x^2+\sqrt{2013}}\right)\)
b) Tính S = x + y
Cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) . Tính P = x+y
Cho \(\left(\sqrt{x^2+2013}+x\right)\left(\sqrt{y^2+2013}+y\right)=2013\). Tính giá trị của x + y
Cho các số thực dương x,y,z thoả mãn: \(\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{z}-\sqrt{x}\right)^3=0\)
Tính T= \(T=\left(\sqrt{x}-\sqrt{y}\right)^{2013}+\left(\sqrt{y}-\sqrt{z}\right)^{2013}+\left(\sqrt{z}-\sqrt{x}\right)^{2013}\)
cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)tìm A=x+y
Cho x,y,z không âm thoả mãn \(\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{y}-\sqrt{z}\right)^3+\left(\sqrt{z}-\sqrt{x}\right)^3=0\)
Tính giá trị của biểu thức \(P=\left(\sqrt{x}-\sqrt{y}\right)^{2013}+\left(\sqrt{y}-\sqrt{z}\right)^{2013}+\left(\sqrt{z}-\sqrt{x}\right)^{2013}\)
Cho các số dương x,y,z thỏa mãn: \(\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{y}-\sqrt{z}\right)^3+\left(\sqrt{z}-\sqrt{x}\right)^3=0\)
tính giá trị biểu thức: T=\(\left(\sqrt{x}-\sqrt{y}\right)^{2013}+\left(\sqrt{y}-\sqrt{z}\right)^{2013}+\left(\sqrt{z}-\sqrt{y}\right)^{2013}\)
Giải chi tiết ra giùm mk nhé. Cảm ơn
A> Cho biểu thức : \(A=\)\(\left(x^2-x-1\right)^2+2013\)
Tính giá trị của A khi x= \(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3+1}+1}}\)
B> cho \(\left(x+\sqrt{x^2+2013}\right)\cdot\left(y+\sqrt{y^2+2013}\right)=2013\). Chứng minh \(x^{2013}+y^{2013}=0\)
cho x,y thỏa mãn :\(\left(\sqrt{x^2+3}+x\right)\cdot\left(\sqrt{y^2+3}+y\right)=3\)
tính A=\(x^{2013}+y^{2013}+1\)