Dễ thấy: −(x+√x2+2007)=y−√y2+2007−(x+x2+2007)=y−y2+2007 và −(x−√x2+2007)=y+√y2+2007−(x−x2+2007)=y+y2+2007.
Do đó: x = - y => S = 0.
Dễ thấy: −(x+√x2+2007)=y−√y2+2007−(x+x2+2007)=y−y2+2007 và −(x−√x2+2007)=y+√y2+2007−(x−x2+2007)=y+y2+2007.
Do đó: x = - y => S = 0.
Cho \(\left(x+\sqrt{x^2+2007}\right)\left(y+\sqrt{y^2+2007}\right)=2007\)
Tính x+y
Cho \(\left(x+\sqrt{x^2+2007}\right)\left(y+\sqrt{y^2+2007}\right)=2007.\) Tính x+y
cho \(\left(x+\sqrt{x^2+2007}\right)\left(y+\sqrt{y^2+2007}\right)=2007\)
Hãy tính: \(S=x+y\)
Cho: x+y+z=2007.tính: \(\frac{x^3+y^3+z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
cho 3 số x,y,z thỏa mãn \(\hept{\begin{cases}x+y+z=2010\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2010}\end{cases}}\)
tính \(P=\left(x^{2007}+y^{2007}\right)\left(y^{2009}+z^{2009}\right)\left(z^{2009}+x^{2009}\right)\)
Tìm x biết : \(\frac{\left(2006-x\right)^2+\left(2006-x\right)\left(x-2007\right)+\left(x-2007\right)^2}{\left(2006-x\right)^2-\left(2006-x\right)\left(x-2007\right)+\left(x-2007\right)^2}=\frac{19}{49}\)
cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cx=0 và a+b+b=2007.
Tính :\(P=\frac{ax^2+by^2+cz^2}{bc\left(y-x\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
Tính giá trị biểu thức A=\(\sqrt{\left(1-\sqrt[]{2007^{ }}\right)}^2.\sqrt{2008+2\sqrt[]{2007}}\)
giải phương trình vô tỉ sau
\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2008\)