Cho khối lăng trụ ABC.A'B'C', hình chiếu của điểm A lên mặt phẳng (A'B'C') là trung điểm M của cạnh B'C' và A'M=a 3 , hình chiếu của điểm A lên mặt phẳng (BCC'B') là H sao cho MH song song với BB' và AH=a, khoảng cách giữa hai đường thẳng BB' , CC' bằng 2a . Thể tích khối lăng trụ đã cho là
A. 3 2 a 3
B. 2 a 3
C. 2 2 a 3 3
D. 3 2 a 3 2
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại C, AB = 2a, AA'=a , góc giữa BC' và (ABB'A') bằng 60 o . Gọi N là trung điểm AA' và M là trung điểm BB'. Tính khoảng cách từ điểm M đến mặt phẳng (BC'N).
A. 2 a 74 37
B. a 74 37
C. 2 a 37 37
D. a 37 37
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AB=a, AA'= 2a. Gọi M là trung điểm của đoạn thẳng A'C', I là giao điểm của AM và AC'. Tính khoảng cách từ điểm A đến mặt phẳng (IBC).
A . 2 5 a 5
B . 5 a 5
C . 2 3 a 5
D . 3 a 5
Cho lăng trụ đứng ABC.A'B'C' có AB=AC=BB'=a, B A C ⏜ = 120 0 . Gọi I là trung điểm của CC’. Ta có cosin của góc giữa hai mặt phẳng (ABC) và (AB'I) bằng:
Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a (tham khảo hình vẽ bên). Gọi M là trung điểm của cạnh BC. Khoảng cách giữa hai đường thẳng AM và B’C là:
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông BA=BC=a, cạnh bên AA'=a 2 , M là trung điểm của BC. Khoảng cách giữa AM và B' C là:
Cho lăng trụ đứng ABC.A'B'C' có tam giác ABC vuông cân tại A, AB = AC = 2a, AA' = 3a. Gọi M là trung điểm AC, N là trung điểm BC. Khoảng cách từ điểm C đến mặt phẳng (A'MN)
A. 2 a 10
B. 3 a 10
C. 6 a 10
D. a 10
Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân, AB=AC=a, AA'=h (a,h>0). Tính khoảng cách giữa hai đường thẳng chéo nhau AB',BC'
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân với AB=AC=a và cạnh BAC=120 ° , cạnh bên BB'=a, gọi I là trung điểm của CC'. Côsin góc tạo bởi mặt phẳng (ABC) và (AB'I) bằng.
A. 20 10
B. 30
C. 30 10
D. 30 5