Đáp án C
Từ giả thiết ta có: V = π r 2 h = π 4 2 .5 = 80π( m 3 )
Đáp án C
Từ giả thiết ta có: V = π r 2 h = π 4 2 .5 = 80π( m 3 )
Cho khối trụ có bán kính đáy bằng a và thiết diện đi qua là một hình vuông. Thể tích khối trụ là:
A. 2 π a 3 B. 2 π a 3 /3
C. 4 π a 3 D. π a 3
Cho khối trụ có bán kính đáy a 3 và chiều cao 2a 3 . Thể tích của nó là
Một khối trụ có bán kính đáy bằng r và chiều cao bằng r 3 . Gọi A và B là hai điểm trên hai đường tròn đáy sao cho góc được tạo thành giữa đường thẳng AB và trục của khối trụ bằng 30 ° . Tính góc giữa hai bán kính đáy qua A và B.
Một khối trụ có bán kính đáy bằng r và chiều cao bằng r 3 . Gọi A và B là hai điểm trên hai đường tròn đáy sao cho góc được tạo thành giữa đường thẳng AB và trục của khối trụ bằng 30 ° . Tính diện tích của thiết diện qua AB và song song với trục của khối trụ.
Cho khối trụ có bán kính hình tròn đáy bằng r, chiều cao h. Hỏi nếu tăng chiều cao lên gấp 2 lần và tăng bán kính đáy lên gấp 3 lần so với khối trụ ban đầu thì thể tích của khối trụ mới thiết lập sẽ tăng bao nhiêu lần so với khối trụ ban đầu?
Cho một hình trụ có chiều cao bằng 2 và bán kính đáy bằng 3. Thể tích khối trụ đã cho bằng:
A . 6 π
B . 15 π
C. 9 π
D . 18 π
Cho hình trụ có đường cao h và bán kính đáy là r. Trong các khối lăng trụ tứ giác nội tiếp hình trụ thì khối lăng trụ có thể tích lớn nhất bằng:
A. h r 2
B. 2h r 2
C. 3h r 2
D. 4h r 2
Một khối trụ có đường kính đáy bằng chiều cao và nội tiếp trong mặt cầu bán kính R thì thể tích của khối trụ là:
A. 2 π R 3
B. π R 3 2 2
C. π R 3 2 6
D. 2 3 π R 3
Một bình đựng nước dạng hình nón (không có nắp đáy), đựng đầy nước. Biết rằng chiều cao của bình gấp 3 lần bán kính đáy của nó. Người ta thả vào bình đó một khối trụ và đo được thể tích nước tràn ra ngoài là 16 π 9 d m 3 . Biết rằng một mặt của khối trụ nằm trên mặt đáy của hình nón và khối trụ có chiều cao bằng đường kính đáy của hình nón (như hình vẽ dưới). Tính bán kính đáy của bình nước.