Cho khối lăng trụ ABC.A'B'C' có thể tích là V, thể tích của khối chóp C'.ABC là:
A. 2V
B. 1 2 V
C. 1 3 V
D. 1 6 V
Cho lăng trụ đứng ABC.A’B’C’ với đáy ABC là tam giác vuông cân tại A. Biết AB=3a góc giữa đường thẳng A’B và mặt đáy lăng trụ bằng 30 o Tính thể tích V của khối chóp A’.ABC.
Cho khối lăng trụ đứng ABC.A’B’C’ có BB’ = a, đáy ABC là tam giác vuông cân tại B, AB = a. Tính thể tích V của khối lăng trụ.
Cho khối lăng trụ ABC.A’B’C’ có AB= BC= 5a, AC= 6a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) là trung điểm của AB và A’C= a 133 2 .Tính thể tích V của khối lăng trụ ABC.A’B’C’ theo a
A. 12 a 3
B. 12 133 a 3
C. 36 a 3
D. 4 133 a 3
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, Biết AC = a 2 và AB = a 37 . Tính thể tích V của khối lăng trụ ABC.A’B’C’
A. V = 6 a 3
B. V = a 3
C. V = 3 a 3
D. V = 9 a 3
Cho khối lăng trụ ABC. A’B’C’ có thể tích là V. Điểm M là trung điểm của cạnh AA’. Tính theo V thể tích khối chóp M. BCC’B’
A. 2 V 3
B. 3 V 4
C. V 3
D. V 2
Cho hình lăng trụ ABC.A’B’C’, trên các cạnh AA’, BB’ lấy các điểm M, N sao cho AA' = 4A'M, BB' = 4B'N. Mặt phẳng (C'MN) chia khối lăng trụ thành hai phần. Gọi V 1 là thể tích khối chóp C’.A’B’MN và V 2 là thể tích khối đa diện ABCMNC’. Tính tỷ số V 1 V 2
A. V 1 V 2 = 1 5
B. V 1 V 2 = 4 5
C. V 1 V 2 = 2 5
D. V 1 V 2 = 3 5
Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu của A¢ lên (ABC) trùng với trung điểm của BC. Thể tích của khối lăng trụ là độ dài cạnh bên của khối lăng trụ là
Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, A A ' = 3 a 2 . Biết rằng hình chiếu vuông góc của A’ lên (ABC) là trung điểm BC. Tính thể tích V của khối lăng trụ đó
A. V = a 3
B. V = 2 a 3 3
C. V = 3 a 3 4 2
D. V = a 3 3 2