Cho khối hộp chữ nhật A B C D . A ' B ' C ' D ' có thể tích bằng 2110. Biết A ' M = M A ; D N = 3 N D ' ; C P = 2 P C ' . Mặt phẳng M N P chia khối hộp đã cho thành hai khối đa diện. Thể tích khối đa diện nhỏ hơn bằng
A. 7385 18
B. 5275 12
C. 8440 9
D. 5275 6
Cho khối hộp chữ nhật ABCD.A'B'C'D' có thể tích bằng 2110. Biết A'M=MA; DN=3ND'; CP=2PC'. Mặt phẳng (MNP) chia khối hộp đã cho thành hai khối đa diện. Thể tích khối đa diện nhỏ hơn bằng
A. 7385 18
B. 5275 12
C. 8440 9
D. 5275 6
Cho khối hộp chữ nhật ABCD. A'B'C'D' có thể tích bằng 2110. Biết (MNP), DN=3ND', CP=2C'P như hình vẽ. Mặt phẳng (MNP) chia khối hộp đã cho thành hai khối đa diện. Thể tích khối đa diện nhỏ hơn bằng:
A. 5275 6
B. 8440 9
C. 7485 18
D. 5275 12
Cho khối hộp ABCD.A'B'C'D' có thể tích bằng 2018. Gọi M là trung điểm của cạnh AB. Mặt phẳng (MB'D') chia khối chóp ABCD.A'B'C'D' thành hai khối đa diện. Tính thể tích phần khối đa diện chứa đỉnh A
A. 5045 6
B. 7063 6
C. 10090 17
D. 7063 12
Cho khối hộp ABCD.A'B'C'D', điểm M nằm trên cạnh CC’ thỏa mãn CC’ = 3CM. Mặt phẳng (AB’M) chia khối hộp thành hai khối đa diện. Gọi V1 là thể tích khối đa diện chứa đỉnh A’,V2 là thể tích khối đa diện chứa đỉnh B. Tính tỉ số thể tích V1 và V2.
A. 1 27
B. 27 7
C. 7 20
D. 9 4
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V . Tính V .
A. 7 2 a 3 216
B. 11 2 a 3 216
C. 13 2 a 3 216
D. 2 a 3 18
Cho khối lăng trụ tam giác ABC. A'B'C'. Gọi M, N lần lượt là trung điểm của BB' và CC'. Mặt phẳng (AMN) chia khối lăng trụ thành hai phần. Gọi V₁ là thể tích của khối đa diện chứa đỉnh B' và V₂ là thể tích khối đa diện còn lại. Tính tỉ số V₁/V₂.
A. V 1 V 2 = 7 2
B. V 1 V 2 = 2
C. V 1 V 2 = 1 3
D. V 1 V 2 = 5 2
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trọng tâm của các tam giác ABD, ABC và E là điểm đối xứng với điểm B qua điểm D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh A có thể tích V. Tính V
Cho tứ diện đều ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC và E là điểm đối xứng với B qua D. Mặt phẳng (MNE) chia khối tứ diện ABCD thành hai khối đa diện, trong đó khối chứa điểm A có thể tích V. Tính V.