Cho hình chóp S.ABCD có ABCD là hình bình hành, AB=2a, BC=a, A B C ⏜ = 120 0 . Cạnh bên S D = a 3 và SD vuông góc với mặt phẳng đáy (tham khảo hình vẽ bên). Tính sin của góc tạo bởi SB và mặt phẳng (SAC).

A. 3 4
B. 3 4
C. 1 4
D. 3 7
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABCD) và SA=2 α Tính cosin của góc giữa đường thẳng SB và mặt phẳng (SAD)



![]()
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng (ABCD) và SA=a 6 . Gọi a là góc giữa đường thẳng SB và mặt phẳng (SAC). Tính sin α ta được kết quả là:
A. 1 14
B. 2 2
C. 3 2
D. 1 5
#SGD Bắc Giang – năm 2017 – 2018~Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật, AB=a, BC = a 3 , SA=a và SA vuông góc với đáy ABCD. Tính sin α, với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC).
![]()
![]()
![]()
![]()
Cho hình chóp S. ABCD có đáy ABCD là hình vuông có độ dài đường chéo bằng a 2 và SA vuông góc với mặt phẳng (ABCD). Gọi α là góc giữa hai mặt phẳng (SBD) và (ABCD). Nếu tan α = 2 thì góc giữa hai mặt phẳng (SAC) và (SBC) bằng:
A. 300
B. 600
C. 450
D. 900
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a , BC = a 3 , SA = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng




Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi đường thẳng BD và mặt phẳng (SBC)




Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA ⊥ (ABCD) và SA = a 3 . Gọi α là góc tạo bởi giữa đường thẳng SB và mặt phẳng (SAC), khi đó α thỏa mãn hệ thức nào sau đây?
A. cos α = 2 8
B. sin α = 2 8
C. sin α = 2 4
D. cos α = 2 4
Cho hình chóp SABCD có đáy ACBD là hình vuông cạnh α , SA vuông góc với mặt phẳng đáy, góc giữa SB và mặt đáy bằng 600. Tính khoảng cách h từ A tới mặt phẳng (SBC)



![]()