Cho xOy khác góc bẹt và một điểm M thuộc miền trong của góc. Dựng đường thẳng qua M và cắt hai cạnh của góc thành một tam giác có diện tích nhỏ nhất.
Cho góc xOy nhỏ hơn 180 và một điểm M nằm trong góc đó. Qua M hãy dựng đường thẳng cắt các tia Ox, Oy tại A,B sao cho diện tích tam giác OAB nhỏ nhất?
Cho đoạn thẳng AB và điểm M cố định thuộc đường thẳng AB. Vẽ về một phía của AB các tia Ax và By vuông góc với AB. Qua M vẽ hai đường thẳng thay đổi luôn vuông góc với nhau và cắt Ax, By theo thứ tự tại C và D. Xác định vị trí các điểm C và D sao cho diện tích tam giác MCD nhỏ nhất
Cho đoạn thẳng AB và điểm M cố định thuộc đường thẳng AB. Vẽ về một phía của AB các tia Ax và By vuông góc với AB. Qua M vẽ hai đường thẳng thay đổi luôn vuông góc với nhau và cắt Ax, By theo thứ tự tại C và D. Xác định vị trí các điểm C và D sao cho diện tích tam giác MCD nhỏ nhất
Bài 1: Cho (O;R) và một điểm M. Hãy chỉ dùng thước thẳng dựng đường thẳng đi qua M và vuông góc với đường kính AB cho trước (đường kính AB không đi qua M).
Bài 2: Cho (O;R) và (O’;R’) cùng trực giao với đường tròn (C;r). Chứng minh trục đẳng phương của hai đường tròn (O;R) và (O’;R’) đi qua điểm C.
Bài 3: Cho A không thuộc (O;R). O’ di động trên (O;R), đường thằng a là trục đẳng phương của hai đường tròn (O;R) và (O’;O’A). Chứng minh khoảng cách từ A đến đường thẳng a là không đổi.
Bài 4: Cho góc xOy = 45 độ. A là một điểm thuộc miền trong của góc đó. Bằng thước và compa hãy dựng đường thẳng đi qua A cắt Ox, Oy lần lượt tại M, N sao cho A là trung điểm của MN.
Bài 5: Cho góc xAy, hai điểm B, C lần lượt thay đổi trên các tia Ax, Ay sao cho AB+AC=d không đổi. Từ A kẻ đường thẳng song song với BC, cắt đường tròn ngoại tiếp tam giác ABC tại M. Tìm quỹ tích điểm M.
Bài 6: Cho nửa (T) đường kính AB, hai nửa đường thẳng Ax, By nằm cùng một phía và tiếp xúc với (T). Lấy hai điểm di động M thuộc Ax, N thuộc By sao cho ABMN có diện tích S không đổi. Tìm quỹ tích hình chiếu trung điểm I của AB trên MN.
Bài 7: Cho ∆ABC, các điểm M, N lần lượt thuộc AB, AC sao cho MN // BC. Xác định trục đẳng phương của 2 đường tròn đường kính BN và CM.
Cho một điểm M nằm trong góc xOy. Một đường thẳng d đi qua M cắt hai cạnh của góc ở A và B. CMR \(\dfrac{1}{S_{OMB}}+\dfrac{1}{S_{OMA}}\)không phụ thuộc vào vị trí của đường thẳng d
cho tam giác ABC vuông tại A, đường cao AH. Đường tròn đường kính AH cắt cạnh AB,AC lần lượt tại D và E
a) đường thẳng qua A vuông góc với DE cắt BC tại I. CM I là trung điểm của BC
b) CMR nếu diện tích tam giác ABC gấp đôi diện tích ADHE thì tam giác ABC là tam giác vuông cân
c) Gọi M và N lần lượt là giao điểm của BC với các đường thẳng qua D,E và vuông góc với DE. Giả sử A là điểm di động nhưng luôn nhìn AB cố định dưới một góc vuông. Tìm vị trí của A để diện tích tứ giác DMNE lớn nhất
Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác trong của góc A cắt đường tròn (O) tại điểm M.
a) Đường phân giác ngoài của góc A cắt lại đường tròn (O) tại N. CM M, O, N thẳng hàng.
b) Giả sử đường phân giác góc ngoài cắt đường thẳng BC tại E . CM góc AMO = góc CEA
c) Trên cạnh AC lấy điểm D tùy ý ( khác A và C). Đường thẳng BD cắt đường tròn (O) tại điểm thứ hai F. Đường thẳng qua A vuông góc với AB và đường thẳng qua F vuông góc với FC cắt nhau tại P. Chứng tỏ rằng P, D, O thẳng hàng.
Cho góc vuông xOyˆ, một điểm M cố định nằm trong tam giác đó, D là 1 đường thẳng quay quanh cắt cạnh Ox, Oy theo thứ tự từ A và B ( khác O). Xác định vị trí của D sao cho:
a) Tam giác OAB có S nhỏ nhất.
b) OA + OB nhỏ nhất.