Ta có \(I=\frac{11}{3}+\frac{17}{3^2}+...+\frac{605}{3^{100}}\left(1\right)\)
\(\Leftrightarrow3I=11+\frac{17}{3}+\frac{23}{3^2}+...+\frac{605}{3^{99}}\left(2\right)\)
Lấy \(\left(2\right)trừ\left(1\right)\)ta có
\(3I-I=11+\frac{6}{3}+\frac{6}{3^2}+...+\frac{6}{3^{99}}-\frac{605}{3^{100}}\)
\(\Leftrightarrow2I=11+6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{605}{3^{100}}\)
Xét \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\left(3\right)\)
\(\Leftrightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^{99}}\left(4\right)\)
Lấy\(\left(4\right)-\left(3\right)\)ta có
\(2A=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow6A=3-\frac{1}{3^{99}}\)
Khi đó \(2I=11+3-\frac{1}{3^{99}}-\frac{605}{3^{100}}\)
\(\Leftrightarrow2I=14-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
Vì\(\frac{1}{3^{99}}+\frac{605}{3^{100}}>0\)
\(\Rightarrow2I< 14\)
\(\Leftrightarrow I< 7\left(đpcm\right)\)