1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
1. tìm m để hpt có nghiệm duy nhất mà x và y trái dấu
2. tìm m để hpt có nghiệm duy nhất mà x và y là số nguyên
cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=-1\\x+y=-m\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất thỏa mãn \(y^2=x\)
\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
tìm m để HPT có nghiệm (x;y) duy nhất thỏa mãn x<0 và y>0
\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
tìm m để HPT có nghiệm (x;y) duy nhất thỏa mãn x<0 và y<0
\(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)
tìm m để HPT có nghiệm duy nhất (x,y) sao cho x+y>-5
Với x , y là nghiệm duy nhất của HPT , tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m
\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
cho hpt \(\hept{\begin{cases}mx+y=1\\x+my=2\end{cases}}\)
a, giải hpt khi m=3
b giải và biện luận hpt theo m
c tìm m để hpt có nghiệm (x; y) thỏa mãn x-y=1
d, tìm hệ thức liên hệ giữa x và y không phụ thuộc vào m
Cho hpt \(\left\{{}\begin{matrix}\frac{2}{y}-1=\frac{x}{y}\\\frac{mx}{y}+5=\frac{2x}{y}\end{matrix}\right.\)
a, Giải hpt khi m = 1
b, Tìm m để hệ có nghiệm duy nhất