cho hpt \(\hept{\begin{cases}ax+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
1.Cho hpt \(\hept{\begin{cases}nx-y=4\\x+y=1\end{cases}}\)
a) Với giá trị nào của n thì hệ phương trình có duy nhất nghiệm?
b) Với giá trị nào của n thì hệ phương trình vô nghiệm
Bài 3: Cho hệ phương trình \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\)
a. Tìm m để hệ phương trình trên có nghiệm duy nhất, vô số nghiệm
b. Tìm m để hệ phương trình trên có nghiệm x<0, y>0
Cho hệ phương trình \(\hept{\begin{cases}x+ay=1\\-ax+y=a\end{cases}}\)
a, Tìm giá trị nguyên của a để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn 2x -y= a+1
b, tìm a để hệ có nghiệm (x;y) sao cho x<0; y<0
a, Tìm giá trị nguyên của m để nghiệm nguyên duy nhất (x;y) thỏa mãn 2x-y= m+ 1
b, Tìm a để hệ có nghiệm (x;y) sao cho x<0; y,0
1. Giải hệ PT:
\(\hept{\begin{cases}2x+ay=-4\\ax-3y=5\end{cases}}\)
2. \(\hept{\begin{cases}2x-ay=b\\ax+by=1\end{cases}}\)
Tìm a,b để hệ có vô số nghiệm
3. \(\hept{\begin{cases}x+ay=a+1\\ax+y=3a-1\end{cases}}\)
a) Giải và biện luận hpt
b) Tìm a để hệ có nghiệm duy nhất thỏa mãn đk xy nhỏ nhất
Giúp mình với TT. Ai giải được nhanh, đúng nhất mình sẽ tick nha ^^
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
Cho hpt \(\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)
Với giá trị nguyên nào của m thì hpt có nghiệm duy nhất thỏa mãn x<0;y>0
Tìm a để hpt có nghiệm duy nhất
\(\hept{\begin{cases}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{cases}}\)
Cho hpt \(\hept{\begin{cases}2x-my=0\\x+y=6\end{cases}}\)
a) Giả hpt khi m=1
b) Tìm m để hpt đã cho có duy nhất 1 nghiệm? Vô nghiệm?