cho hình vuông ABCD, lấy điểm M bất kỳ trên đoạn BD. Kẻ ME vuông góc với AB và kẻ MF vuông góc với AD. Chứng minh 3 đường thẳng DE, BF và CM đồng quy
1. Trên đương chéo BD của hình vuông ABCD lấy một điểm M . Từ M vẽ đường thẳng ME vuông góc với AB, MF vuông góc với AD( E thuộc AB, F thuộc AD).Chứng minh rằng : ba đường thẳng BF,CM và DE đồng quy
cho hình vuông ABCD , M là 1 điiểm thuộc đường chéo BD , kẻ ME vuông góc với AB, MF vuông góc với AD
a) chứng minh DE vuông góc với CF ,EF=CM
b) chứng minh các đoạn CM,BF,DE đồng quy
Cho hình vuông ABCD, điểm M tùy ý trên đường chéo BD. kẻ ME vuông góc với AB tại E, MF vuông góc với AD tại F.
a, Tứ giác AEMF là hình gì? Vì sao?
b, CM: AF = BE và DE vuông góc với CF.
c, Ba đường DF, BF, CM đồng quy.
Cho hình vuông ABCD. Từ điểm M thuộc đường chéo BD, kẻ ME vuông góc với AB (E thuộc AB) và MF vuông góc với AD (F thuộc AD). Chứng minh rằng ba đường thẳng DE,FB,CM đồng quy?
Xin các thầy cô trong OLM và các bạn giúp em giải bài toán này!
Cho hình vuông ABCD, M là 1 điểm nằm trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.
a) CMR: DE vuông góc với CF; EF=CM.
b) CMR: 3 đườn thẳng DE, BF, CM đồng quy.
c) Xác định vị trí điểm M để tứ giác AEMF có diện tích lớn nhất.
Cho hình vuông ABCD. M là một điểm tùy ý trên đường chéo BD. KẺ ME vuông góc AB, MF vuông góc AD
a) Chứng minh DE=CF Và DE vuông góc CF
B) CMR ba đường thẳng DE, BF, CM đồng quy
Cho hình vuông ABCD, M là 1 điểm tuỳ ý trên đường chéo BD. Kẻ ME vuông góc với AB, MF vuông góc với AD.
a, CMR: DE = CF
b, CMR: 3 đường thẳng DE, BF, CM đồng quy
c, Xác định vị trí của điểm M đề diện tích tứ giác AEMF lớn nhất