cho đường tròn O,R và điểm M nằm ngàoi O qua M kẻ tiếp tuyeens MA MB với O và cát tuyến MDC sao cho MC<MD đoạn thẳng MO cắt AB tại H
a chứng minh MAOB nôi tiếp
b cm MB^2=MC.MD
c chứng minh CHOD nội tiếp HA là phân giác CHD
d giả sử M cđ chứng minh MCD thay đổi trọng tâm G của tam giác BCD thuộc 1 đường tròn cố định
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn , vẽ các tiếp tuyến MA,MB với đường tròn (O) ,(AB là các tiếp điểm ) và cát tuyến MCD không đi qua tâm O(MC,<MD, A và O nằm khác phía có bờ la CD ),gọi I là trung điểm của CD
a. Chứng minh 5 điểm M,A,I,O,B cùng thuộc một đường tròn
b. Chứng minh MA2= MC.MD
Cho tam giác ABC có a,b,c,ma,mb,mc,R lần lượt là độ dài các cạnh BC,CA,AB, độ dài các đường trung tuyến kẻ từ A,B,C và bán kính đường tròn ngoại tiếp tam giác. Biết rằng: \(\frac{a^2+b^2}{mc}+\frac{b^2+c^2}{ma}+\frac{c^2+a^2}{mb}=12R\). Chứng minh rằng tam giác ABC đều
Cho ∆ABC đều cạnh bằng a , chứng minh nội tiếp đường tròn (O) . Điểm M thuộc (O) sao cho T=| vectơ MA+ vectơ MB - vectơ MC | lớn nhất. Khi đó giá trị của T bằng bao nhiêu?
Cho đường tròn tâm O , đường kính AB . Trên tiếp tuyến của đường tròn ( O ) tại A lấy điểm M (M khác A ) . Từ M vẽ tiếp tuyến thứ hai MC với ( O ) ( C là tiếp điểm ) . Kẻ CH vuông góc với AB (H thuộc AB ). Tia MB cắt đường tròn ( O ) tại K và cắt CH tại N . Gọi I là giao điểm của OM và AC
a) Chứng minh Tứ giác AKNH nội tiếp
b ) Chứng minh BHAM = OA . HC .
c ) Chứng minh IN song song với AB .
Cảm ơn các bạn nhé!! Mình cần gấp
Cho tam giác đều ABC cạnh a. Biết tập hợp các điểm M thỏa mãn \(|2\overrightarrow{MA}+3\overrightarrow{MB}+4\overrightarrow{MC}|=|\overrightarrow{MB}-\overrightarrow{MA}|\) là một đường tròn bán kính R. Tính R theo a.
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O.
Gọi M là một điểm trên cung nhỏ B C ⏜ (M khác B; C và AM không đi qua O).
Giả sử P là một điểm thuộc đoạn thẳng AM sao cho đường tròn đường kính MP cắt cung nhỏ BC tại điểm N khác M.
2). Đường tròn đường kính MP cắt MD tại điểm Q khác M. Chứng minh rằng P là tâm đường tròn nội tiếp tam giác AQN.
Cho hình thang cân ABCD nội tiếp đường tròn (O) với AB song song CD và AB<CD.
M là trung điểm CD. P là điểm di chuyển trên đoạn MD ( P khác M, D ).
AP cắt (O) tại Q khác A, BP cắt (O) tại R khác B, QR cắt CD tại E. Gọi F là điểm đối xứng với P qua E
1) Chứng minh rằng tâm đường tròn ngoại tiếp tam giác AQF luôn thuộc một đường thẳng cố định khi P di chuyển.
Cho hình thang cân ABCD nội tiếp đường tròn (O) với AB song song CD và AB<CD.M là trung điểm CD.
P là điểm di chuyển trên đoạn MD ( P khác M, D ).AP cắt (O) tại Q khác A, BP cắt (O) tại R khác B,
QR cắt CD tại E. Gọi F là điểm đối xứng với P qua E
2) Giả sử EA tiếp xúc (O). Chứng minh rằng khi đó QM vuông góc với CD.