Cho hình vuông ABCD. Lấy M thuộc AB và N thuộc BC sao cho BN = BM. Gọi H là hình chiếu vuông góc của B lên CM. CMR góc DHN= 90 độ.
Ai giúp mk câu này vs mk sẽ tick choa
Cho hình vuông ABCD. Gọi M, N là các điểm lần lượt trên các cạnh AB, BC, sao cho BM=BN; gọi H là chân đường vuông góc hạ từ B xuống CM.
a, chứng minh: BH x Dc = BN x HC
b, tính góc DHN
c, khi M là trung điểm của AB. Gọi H là giao điểm của BM và DN. chứng minh tam giác ADC cân
bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IE
bài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HN
bài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt BC tại I. CMR:KI//CD
bài 4: cho hình chữ nhật ABCD. Kẻ AH vuông góc BD. Lấy M,N thuộc BH và DC sao cho BM/MH =CN/ND.CMR:góc AMN = 90 độ
bài 5:cho tam giác ABC đều. Một đường song song AC cắt AB và BC theo thứ tự tại I và J, gọi K là trung điểm AJ và O là trọng tâm tam giac BIJ. Tính các góc tam giác OKC
anh chị nào thông minh giải hộ em mấy bài này với, em hứa là sẽ có hoa hồng cho anh chị.
Cho hình vuông ABCD Vẽ Góc MAE=90 độ ( M thuộc BC; M khác B và C;E thuộc CD) Phân Giác góc MAE cắt CD tại N cắt BD tại H. Gọi Gọi K là giao của BD và AM CM
a MN=BM+DN
b E,H,M thẳng hàng
c S AHK= S MNHK
Cho hình vuông ABCD. Trên cạnh AB lấy M, trên cạnh BC lấy N sao cho BM=BN. Gọi H là hình chiếu của B trên MC.
a) Chứng minh: BH^2=HM.HC
b) Biết HM=4cm; HC=9cm. Tính BN
c) Chứng minh tam giác BHN đồng dạng với tam giác CHD. Từ đó suy ra tam giác DHN vuông
cho hình vuông ABCD, cạnh AB bằng 1 (Đvd). Lấy M thuộc BC, N thuộc DC, sao cho góc MAN lằng 45 độ. CM BM+DN=MN
Cho hình vuông ABCD có 2 đg chéo cắt nhau tại E . lấy I thuộc AB sao cho góc IEM = 90o
a: Tinhs góc IME
b: gọi N là giao điểm của của AM và DC , K là giao điểm của BN và EM . CMR : CK vuông góc với BN
Bài 1: Cho hình vuông ABCD, M thuộc AB, N là trung điểm DM trên BC lấy E sao cho BE=BM gọi I là trung điểm AB CMR AE vuông góc NI
Bài 2 cho tam gicá ABC vuông tại A và hình vuông BCDE
CMR AB+AC nhỏ hơn Hoặc bằng CE
Bài 3: cho điểm M nằm trên đoạn thẳng AB. Vẽ về một phía của AB các hình vuông AMCD và BMEF
a) CMR: AE=BC; AE vuông góc với BC
Bài 4: CHO hình vuông ABCD, gọi d là đường thằng bất kì đi qua giao điểm O của hai đường chéo
Gọi AH, BK,CM,DN là cấc đường thẳng vuông góc kẻ đến đường thẳng d
CMR: tồng AH2 + BK2 + CM2 + DN2 có giá trị không đổi
bài 1 cho tam giác ABC vuông tại A đường phân giác AD , gọi E,F lần lượt là hình chiếu của D trên AB và AC . CM tứ giác ADEF là hình vuông
bài 2 cho hình vuông ABCD có góc A=góc D = 90 độ , DC=2AB=2AD . Kẻ BD vuông góc DC ( K thuộc DC)
a, CM tứ giác ABKD là hình vuông
bài 3 cho hình vuông ABCD , có cạnh 4cm , lấy điểm E trên BC , điểm F trên CD sao cho góc EAF = 45 . Trên tiaa đối của tia DC lấy K sao cho DK=BE
a, tính góc KAF
b, tính chu vi tam giác CEF