Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình vuông ABCD. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh BC, CD, DA, AB. Chứng minh MNPQ là hình vuông (tứ giác đều)

Cao Minh Tâm
11 tháng 10 2018 lúc 11:09

Do ABCD là hình vuông có M, N, P, Q lần lượt là trung điểm của BC, CD, DA, AB nên: AQ = QB = BM = MC= CN = ND = DP = PA

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét Δ APQ và Δ BQM:

AQ = BM (gt)

∠ A =  ∠ B = 90 0

AP = BQ (gt)

Do đó: △ APQ =  △  BQM (c.g.c) ⇒ PQ = QM (1)

Xét  △  BQM và  △ CMN:

BM = CN (gt)

∠ B =  ∠ C =  90 0

BQ = CM (gt)

Do đó:  △  BQM =  △ CMN (c.g.c) ⇒ QM = MN (2)

Xét  △  CMN và  △  DNP:

CN = DP (gt)

∠ C =  ∠ D =  90 0

CM = DN (gt)

Do đó:  △ CMN =  △ DNP (c.g.c) ⇒ MN = NP (3)

Từ (1), (2) và (3) suy ra: MN = NP = PQ = QM

nên tứ giác MNPQ là hình thoi

Vì AP = AQ nên  △ APQ vuông cân tại A

BQ = BM nên  △ BMQ vuông cân tại B

⇒  ∠ (AQP) =  ∠ (BQM) = 45 0

∠ (AQP) +  ∠ (PQM) +  ∠ (BQM) =  180 0  (kề bù)

⇒  ∠ (PQM) =  180 0  - ( (AQP) + (BQM) )

            =  180 0 - ( 45 0  + 45 0 ) =  90 0

Vậy tứ giác MNPQ là hình vuông.


Các câu hỏi tương tự
Nguyễn Trần Mỹ Hòa
Xem chi tiết
Nguyễn Trần Mỹ Hòa
Xem chi tiết
Nguyễn Trần Mỹ Hòa
Xem chi tiết
bùi thị phương uyên
Xem chi tiết
Phương
Xem chi tiết
Nguyễn Ngọc Thanh Vy
Xem chi tiết
Lê Đăng Hải Phong
Xem chi tiết
Nàng tiên cá
Xem chi tiết
Trần Hạnh
Xem chi tiết