Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thới Nguyễn Phiên

Cho hình vuông ABCD. Gọi E là điểm trên BC (E không trùng B và C). Qua A kẻ Ax vuông góc với AE, tia Ax cắt CD ở F. Trung tuyến AI của tam giác AEF cắt CD tại K. Qua A kẻ đường thẳng song song với AB cắt AI tại G. Chứng minh: 

a/ AE = AF và tứ giác EKFG là hình thoi

b/ FK.FC = AI.EF

c/ Khi E thay đổi trên BC (E không trùng B và C) thì chu vi tam giác EKC không đổi

Nguyễn Tất Đạt
16 tháng 4 2018 lúc 18:49

A B C D E F K G I

a) Xét \(\Delta\)ABE và \(\Delta\)ADF:  AB=AD; ^ABE=^ADF=900;  ^BAE=^DAF (Cùng phụ với ^DAE)

=> \(\Delta\)ABE=\(\Delta\)ADF (g.c.g) => AE=AF (2 cạnh tương ứng)

=> \(\Delta\)AEF vuông cân tại A (Do ^EAF=900)

=> Trung tuyến AI của \(\Delta\)AEF đồng thòi là đường trung trực của EF

Ta thấy 2 điểm K và G nằm trên AI nên GE=GF; KE=KF (1)

Lại có: GE//AB hay GE//CD => ^GEF=^KFE. Mà ^KFE=^KEF (Do tam giác EKF cân tại K)

=> ^GEF=^KEF => EF hay EI là đường phân giác ^GEK

Xét \(\Delta\)EGK: EI\(\perp\)GK; EI là phân giác ^GEK => \(\Delta\)EGK cân tại E => EG=EK (2)

Từ (1) và (2) => GE=GF=KE=KF => Tứ giác EKFG là hình thoi (đpcm).

b) Ta có: EF\(\perp\)AK tại I (Dễ chứng minh) => \(\Delta\)FIK ~ \(\Delta\)FCE (g.g)

=> \(\frac{FI}{FC}=\frac{FK}{FE}\)=> FK.FC = FI.FE

Vì tam giác AEF vuông tân tại A và có đường trung tuyến AI => AI=FI

=> FK.FC=AI.EF (đpcm).

c) CECK= CE+CK+EK = CE+CK+FK (Do EK=FK) = CK+CE+DK+DF

Ta có: \(\Delta\)ABE = \(\Delta\)ADF (cmt) => BE=DF => CECK=CK+CE+DK+BE=CD+BC

Mà CD và BC không đổi => CECK không đổi khi E thay đổi trên BC (đpcm). 


Các câu hỏi tương tự
Nguyễn Thanh Hiền
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết
Dũng Nguyễn Văn
Xem chi tiết
Nguyễn Văn Hòa
Xem chi tiết
philanthao
Xem chi tiết
hoang xuan quyen
Xem chi tiết
Ngân Vũ
Xem chi tiết
Khuất Yến
Xem chi tiết
gintoki hoydou
Xem chi tiết