Cho hình vuông ABCD. Điểm E là điểm bất kỳ thuộc cạnh CB. Điểm F trên cạnh CD sao cho góc EAF bằng 45 độ. Hạ AH vuông góc EF. CMR HE = BE và HF = DF
cho hình vuông ABCD có cạnh là a. Trên BC lấy M bất kì khác B,C. Trên CD lấy N sao cho góc MAN=45 độ. Đường chéo BD cắt AM và AN tại E và F. Chứng minh:
a, tam giác ABE đồng dạng với tam giác ACN
b, góc AEN bằng góc AFM và bằn 90 độ
c, Diện tích tam giác AEF bằng diện tích tứ giác MNFE
d, chu vi tam giác CMN không đổi khi M di chuyển trên BC
Hình vuông ABCD cạnh a, E thuộc BC, F thuộc CD, sao cho góc EAF=45 độ trên trung điểm DC lấy K sao cho DK=BEa, tính góc KAF ?b,tính chu vi tam giác CEF
Cho hình vuông ABCD có cạnh bằng 10cm. E, F lần lượt thuộc AB, AD sao cho AE=DF=x(cm).
a) Tìm x sao cho diện tích tam giác AEF bằng 3/25 diện tích hình vuông ABCD
b) Tìm giá trị lớn nhất của diện tích tam giác AEF
Hình vuông ABCD cạnh a, E thuộc BC, F thuộc CD, sao cho góc EAF=45 độ trên trung điểm DC lấy K sao cho DK=BE
a, tính góc KAF ?
b,tính chu vi tam giác CEF
cho hình chữ nhật ABCD có diện tích là 24 cm vuông. lấy E trên BC và F trên CD sao cho dt tam giác ABE bằng 4 cm vuông, dt tam giác ADF bằng 9 cm vuông. Tính diện tích tam giác AEF
cho hình vuông ABCD ; lấy E trên BC, F trên CD sao cho góc EAF = 45 độ. Chứng minh chu vi hình vuông gấp đôi chu vi tam giác CEF
1.Cho hình thoi ABCD có cạnh =a.Biết góc B=60 độ
a)C/m tam giác ABC đều
b)Tính diện tích hình thoi ABCD theo a
2.Cho hình vuông ABCD có độ dài cạnh =a.Điểm M bất kì trên đường thẳng AC.Kẻ ME vuông góc AB tại E và MF vuông góc AC tại F.Tìm vị trí của điểm M trên AC để diện tích tam giác CEF lớn nhất
cho hình vuông abcd có độ dài cạnh là a trên cạnh bc và cd lấy e,f sao cho chu vi tham giác cef=2a.tính góc eaf và chứng minh khoảng cách từ a đến ef không thay đổi khi e,f di chuyển bc và cd(vẫn có chu vi tam giác cef-2a)