ABCD là hình vuông
\(\Rightarrow\widehat{AOB}=90^o\)hay \(\widehat{AOE}+\widehat{EOB}=90^o\)
Ta lại có : \(\widehat{xOy}=90^o\)hay \(\widehat{EOB}+\widehat{BOF}=90^o\)
\(\Rightarrow\widehat{AOE}=\widehat{BOF}\)( cùng phụ với \(\widehat{EOB}\))
+) Xét 2 tam giác : AOE và BOF , có :
OA = OB
\(\widehat{OAE}=\widehat{OBF}\left(=90^o\right)\)
\(\widehat{AOE}=\widehat{BOF}\left(cmt\right)\)
\(\Rightarrow\Delta AOE=\Delta BOF\left(g-c-g\right)\)
\(\Rightarrow S_{AOE}=S_{BOF}\)
\(\Rightarrow S_{AOE}+S_{OEB}=S_{BOF}+S_{OEB}\)
hay \(S_{AOB}=S_{OEBF}\)
Mà \(S_{AOB}=\frac{1}{2}S_{ABCD}=\frac{a^2}{4}\)
\(\Rightarrow S_{OEBF}=\frac{a^2}{4}\)