cho hình vuông ABCD , M là trung điểm AB. Trên cạnh DC và BC lấy lần lượt hai điểm P và N sao cho MN // AP và góc PON = 450 ( O là giao điểm hai dường chéo AC và BD ) . CHỨNG MINH RẰNG : tam giác DOP đồng dạng với tam giác BNO.
cho hình vuông ABCD có cạnh là a. Trên BC lấy M bất kì khác B,C. Trên CD lấy N sao cho góc MAN=45 độ. Đường chéo BD cắt AM và AN tại E và F. Chứng minh:
a, tam giác ABE đồng dạng với tam giác ACN
b, góc AEN bằng góc AFM và bằn 90 độ
c, Diện tích tam giác AEF bằng diện tích tứ giác MNFE
d, chu vi tam giác CMN không đổi khi M di chuyển trên BC
cho hình bình bình hành ABCD có 2 đg chéo cắt nhau tại O. Trên đg chéo BD lấy M,N sao cho BM=MN=ND. Các tia AM, AN cắt BC, CD tại P và Q. Cmr: O là trọng tâm của tam giác APQ.
cho hình bình bình hành ABCD có 2 đg chéo cắt nhau tại O. Trên đg chéo BD lấy M,N sao cho BM=MN=ND. Các tia AM, AN cắt BC, CD tại P và Q. Cmr: O là trọng tâm của tam giác APQ.
1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF
2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.
3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.
Tính tỷ số diện tích tam giác AND với diện tam giác PMD?
Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.
Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.
Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.
Bài 4: Cho hình bình hành ABCD. Vẽ AH vuông góc với CD tại H, AK vuông góc với BC tại K. Chứng minh rằng tam giác KAH đồng dạng với tam giác ABC
. Bài 5: Cho hình vuông ABCD. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh rằng
a) Tam giác NBC đồng dạng với tam giác BCM b) BM vuông góc với CN.
Bài 6: Cho tam giác ABC có AB = 2,5cm, AC = 2cm, BC =3cm. Chứng minh rằng 𝐴̂ =2𝐵̂
. Bài 7: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng tâm của tam giác ABC.
Bài 8: Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2 . Chứng minh rằng:
a) Tam giác DBM và MCE đồng dạng
b) Tam giác DME cùng đồng dạng với hai tam giác trên.
c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.
d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.
Cho hình chữ nhật ABCD (AB<AC). Gọi O là giao điểm hai đường chéo AC và BD. Trên BD lấy điểm M sao cho BM = 1/4 BO. Qua M vẽ đường vuông góc với AM cắt CD tại N. Biết rằng AM = 1/2 AN. Chứng minh rằng N là trung điểm cạnh CD.
1. Cho hình vuông ABCD có độ dài đường chéo bằng 12 cm. M là một điểm bất kỳ trên cạnh AB, O là giao điểm hai đường chéo. Đường thẳng qua O và vuông góc với OM cắt BC tại N. Tính diện tích tứ giác OMBN? .
2. Cho tam giác ABC có diện tích 12cm^2. N là trung điểm BC. M trên AC sao cho AM/AC = 1/3. AN cắt BM tại O. Khi đó diện tích của tam giác OAM là?
Cho hình bình hành ABCD có AB=8cm, AD=6cm. Trên cạnh BC lấy M sao cho BM= 4cm. Đường thẳng AM cắt đường chéo BD tại I, cắt đường thẳng DC tại N.
a) Chứng minh tam giác MAB đồng dạng tam giác AND
b) Tính độ dài DN và CN