Cho hình vuông ABCD có cạnh =1 , Vẽ 1/4 (A,1) nằm trong hình vuông trong đó lấy điểm K khác B và D . Tiêp tuyến tại K với đường tròn cắt cạnh BC ở E , cắt cạnh CD ở F
1. cm : EAF =45 độ
2. Gọi P là giao điểm của AE và BK , Q là giao điẻm của AF và DK
a, cm PQ//BD
b, tính độ dài PQ
Cho hình vuông ABCD có cạnh bằng 1 , Vẽ\(\frac{1}{4}\)đường tròn tâm (A;1) nằm trong hình vuông , trên đó lấy điểm K . Vẽ tiếp tuyến tại K với đường tròn cắt cạnh BC tại E, cắt CD tại F .
a) tình góc EAF
b) AE cắt DK tại P , AF cắt DK tại Q. Cm PQ//BD và tính PQ?
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC .Tia Ax vuông góc với AE tại A cắt cạnh CD kéo dài tại F Kẻ trung tuyến AI của tam giác AEF và kéo dài cắt cạnh CD tại K.
a) cm : AE=AF
b) Cm các tam giác AKF ,CAF đồng dạng và AF^2=KF.CF
c) Cho AB=4cm ,BE=3/4BC. Tính diện tích AEF.
d) AE kéo dài CD tại I .CM:1/AE^2+1/AJ^2 không phụ thuộc vào vị trí điểm E
MN GIÚP EM CÂU C VÀ D VỚI Ạ EM CẢM ƠN MN NHIỀU ^
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC .Tia Ax vuông góc với AE tại A cắt cạnh CD kéo dài tại F Kẻ trung tuyến AI của tam giác AEF và kéo dài cắt cạnh CD tại K.
a) cm : AE=AF
b) Cm các tam giác AKF ,CAF đồng dạng và AF^2=KF.CF
c) Cho AB=4cm ,BE=3/4BC. Tính diện tích AEF.
d) AE kéo dài CD tại I .CM:1/AE^2+1/AJ^2 không phụ thuộc vào vị trí điểm E
MN GIÚP EM CÂU C VÀ D VỚI Ạ EM CẢM ƠN MN NHIỀU ^^
cho đường tròn (O) đường kính BC .lấy 1 điểm A trên (O) sao cho AB>AC . từ A vẽ AH vuông BC(H thuộc BC) .từ H vẽ HE vuông AB và HF vuông AC (E thuộc AB, F thuộc AC
a , cm AEHF là hình chữ nhật và OA vuông EF
b:đường thẳng EF cắt dường tròng (O) tại P và Q ( E nằm giữa P,F )
cm: AP bình =AF.AB => APH là tam giác cân
c: gọi D là giao điểm của PQ và BC ,K là giao diểm của AD và đường tròn (K khác A )
Cm : tứ giác AEFK nỗi tiếp
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Cho hai đường tròn (O) và (O') có cùng bán kính R cắt nhau tại 2 điểm A, B sao cho tâm O nằm trên đường tròn (O') và tâm O' nằm trên đường tròn tâm O. Đường nối tâm OO' cắt AB tại H, cắt đường tròn (O') tại giao điểm thứ 2 là C. Gọi F là điểm đối xứng của B qua O'.
a, CMR AC là tiếp tuyến của (O) và AC vuông góc với BF
b, Trên cạnh AC lấy điểm D sao cho AD = AF. Qua D kẻ đường thẳng vuông góc với OC và cắt OC tại K, cắt AF tại G. Gọi E là giao điểm của AC và BF. CM tứ giác AHO'E, ADKO nội tiếp
c, Tứ giác AHKG là hình gì? Vì sao?
d, Tính diện tích phần chung của hình (O) và (O') the bán kính R
Cho hình vuông ABCD. Lấy điểm E thuộc cạnh BC, Với E ko trùng B và E ko trùng C. Vẽ EF vuông góc với AE, Với F thuộc CD. Đường thẳng AF cắt đg thẳng BC tại G. Vẽ đg thẳng a đi qua điểm A và Vuông góc với AE, đg thẳng a cắt đg thẳng DE tại điểm H.
1/ chứng minh AE/AF = CD/DE
2/ chứng minh rằng tứ giác AEGH là tứ giác nội tiếp
3/ gọi b là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE tại E, biết b cắt đg trung trực của đoạn EG tại K. Chứng minh KG là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE