Áp dụng định lí Pytago vào tam giác vuông ABC ta có:
A C 2 = A B 2 + B C 2 = a 2 + a 2 = 2 a 2
⇒ A C = a 2
Ta có A B → , A C → = B A C ^ = 45 0 nên A B → . A C → = A B . A C . cos 45 0 = a . a 2 . 2 2 = a 2 .
Chọn A.
Áp dụng định lí Pytago vào tam giác vuông ABC ta có:
A C 2 = A B 2 + B C 2 = a 2 + a 2 = 2 a 2
⇒ A C = a 2
Ta có A B → , A C → = B A C ^ = 45 0 nên A B → . A C → = A B . A C . cos 45 0 = a . a 2 . 2 2 = a 2 .
Chọn A.
Cho hình vuông ABCD có cạnh a. Giá trị của biểu thức vectoBC*(2*vectoAD - vectoAB) theo a là bao nhiêu ?
Cho hình vuông ABCD cạnh a, Tính |4\(\overrightarrow{AB}\) - \(\overrightarrow{AC}\)|:
A. A(A + \(\sqrt{2}\) ) B. a\(\sqrt{10}\) C. a\(\sqrt{5}\) D. 3a
Bài 1 Cho A (2; 0) , B(- 3; 4) , C(1; - 5); 1)Cmn: A, B, C l a^ - 3 đỉnh của 1 tam giác 2) Tìm tọa độ trọng tâm G của o ABC 3) Tìm D sao cho ABCD là hình bình hành. 4) Gìm M sao cho 2 MẢ + vec MB; +3 vec MC = 0 5, 5) Tìm N sao cho A là trọng tâm A.BNC 6) Tìm E sao cho A là trung điểm của BE 7)Tìm tọa độ trực tâm 1 của △ABC 8) Tìm MEOX: MA = MB 9)Gọi R, Tìm tọa độ B Q, R sao cho A, B, C lần là trung điểm của PQ, QR và RP. 10) tìm 1 đối xứng với Cqua B GIÚP MÌNH VỚI Ạ
Cho Parabol (P) y=ax2 +bx+c có đỉnh là tâm của 1 hình vuông ABCD, trong đó C, D nằm trên trục hoành và A,B nằm trên (P). Giá trị nhỏ nhất của biểu thức T=ac+2b là bao nhiêu.
Cho các số thực a. b, c, d thỏa mãn a^2 + b^2 - 2a +4b + 1 = 0 và 2c - d + 1 = 0. tìm giá trị nhỏ nhất của biêu thức P= (a-c)^2 + (b-d)^2
Cho a,b,c là 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\). Tìm giá trị lớn nhất của
\(T=\frac{1}{2+a^2}+\frac{1}{2+b^2}+\frac{1}{2+c^2}\)
Giá trị sin 570 o là
A. 3 / 2 B. -1/2
C. 1/3 D. 2 / 2
1)Cho hình bình hành ABCD, xác định các vectơ DA+DC,AB+DA.
2)Cho 5 điểm A, B, C, D, E. Chứng minh rằng: AC-ED+CD+EC-BC = AB
3)Cho hình vuông ABCD, tâm O cạnh bằng a.
a) Xác định vecto BA+DA+AC, AB+CA+BC, AB+AC.
b) Tính độ dài vecto DA+DC, AB-BC
1. Cho A(3;1),B(-1;1),C(6;0). Tìm tọa độ đỉnh D của hình thang cân ABCD với cạnh đáy AB,CD.
2. Cho A(1;2),B(-1;0).Tìm tập hợp điểm M(x;y) thỏa mãn: MA^2=MB^2.
3. Cho A(1;2),B(3;4). Tìm M thuộc Ox sao cho M,A,B thẳng hàng.
Biết sina = -4/5 với 3π/4 < a < π. Giá trị tan a là
A. 1/2 B. 2
C. -2 D. -1/2