Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ một góc 45°. Tính thể tích của khối trụ.
A. πa 3 2 16
B. πa 3 2 4
C. πa 3 2 2
D. 3 πa 3 2 16
Cho một hình trụ tròn xoay và hình vuông (ABCD) cạnh a có hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc . Thể tích của hình trụ bằng
Một hình nón có đường kính đáy là 2a π 3, góc ở đỉnh 120 ° . Thể tích của khối nón đó theo a là:
A. 2 3 π a 3 B. 3 π a 3
C. π a 3 D. π a 3 3
Cho hình lập phương có cạnh bằng a và một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt đối diện của hình lập phương. Gọi S 1 là diện tích 6 mặt của hình lập phương, S 2 là diện tích xung quanh của hình trụ. Tỉ số S 2 / S 1 bằng:
A. π /6 B. 1/2
C. π /2 D. π
Cho khối trụ có bán kính đáy bằng a và thiết diện đi qua là một hình vuông. Thể tích khối trụ là:
A. 2 π a 3 B. 2 π a 3 /3
C. 4 π a 3 D. π a 3
Diện tích xung quanh của hình trụ có bán kính đáy a và đường cao a 3 là:
A. 2 π a 2 3 B. 2 π a 2
C. π a 2 D. π a 2 3
Cho tứ diện đều ABCD cạnh a. Gọi H là hình chiếu vuông góc của đỉnh A xuống mặt phẳng (BCD).
Tính diện tích xung quanh của hình trụ và thể tích của khối trụ có đường tròn đáy ngoại tiếp tam giác BCD và chiều cao AH.
Cho hình nón tròn xoay (N) có đỉnh S và đáy là hình tròn tâm O bán kính r nằm trên mặt phẳng (P) đường cao SO=h Điểm O’ thay đổi trên đoạn SO sao cho SO’=x (0<x<h). Hình trụ tròn xoay (T) có đáy thứ nhất là hình tròn tâm O bán kính r’ (0<r’<r) nằm trên mặt phẳng (P), đáy thứ hai là hình tròn tâm O’ bán kính r’ nằm trên mặt phẳng (Q), (Q) vuông góc với SO tại O’ (đường tròn đáy thứ hai của (T) là giao tuyến của (Q) với mặt xung quanh của (N). Hãy xác định giá trị của x để thể tích phần không gian nằm phía trong (N) nhưng phía ngoài của (T) đạt giá trị nhỏ nhất.
Cho khối trụ có hai đáy là hình tròn (O;R) và (O';R), OO'=4R. Trên đường tròn tâm O lấy (O) lấy hai điểm A, B sao cho AB=R 3 . Mặt phẳng (P) đi qua A, B cắt OO’ và tạo với đáy một góc bằng 60 0 . (P) cắt khối trụ theo thiết diện là một phần của elip. Diện tích thiết diện đó bằng: