Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình thoi ABCD tâm O. Trên tia đối của các tia BA, CB, DC, AD lần lượt các điểm E, F, G, H sao cho BE = CF = DG = AH.

a) Chứng minh tứ giác EFGH là hình bình hành.

b) Chứng minh điểm O là tâm đối xứng của hình bình hành EFGH.

c) Hình thoi ABCD phải có điều kiện gì để EFGH trở thành hình thoi ?

Cao Minh Tâm
2 tháng 7 2019 lúc 2:33

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

c) Hình bình hành EFGH là hình thoi ⇔ HE = EF

⇔ Hình thoi ABCD có 1 góc vuông

⇔ ABCD là hình vuông.

 

Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.


Các câu hỏi tương tự
Hồ ngọc hân
Xem chi tiết
Lê Hà Phương
Xem chi tiết
Nguyễn Thị Thu Trang
Xem chi tiết
Cô nàng Bạch Dương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Phùng Jang Mi
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Dương Nguyễn Ngọc Khánh
Xem chi tiết
Anh Aries
Xem chi tiết