Gọi I là giao điểm của hai đường chéo của hình thoi. Chứng minh P là trọng tâm của ∆ABC
Kẻ PQ//AI => BQ = 2 3 AB => Q Cố định => P thuộc đường tròn đường kính QB
Gọi I là giao điểm của hai đường chéo của hình thoi. Chứng minh P là trọng tâm của ∆ABC
Kẻ PQ//AI => BQ = 2 3 AB => Q Cố định => P thuộc đường tròn đường kính QB
Cho đường tròn (O) đường kính AB cố định. Gọi C là một điểm di
động trên (O) sao cho C khác A, C khác B và C không nằm chính giữa cung AB . Vẽ
đường kính CD của (O). Gọi d là tiếp tuyến của (O) tại A . Hai đường thẳng BC, BD
cắt d tại E, F.
1) Chứng minh tứ giác CDFE nội tiếp được đường tròn
2) Gọi M là trung điểm của EF và I là tâm đường tròn ngoại tiếp tứ giác CDFE .
Chứng minh : AB = 2.IM
3) Gọi H là trực tâm tam giác DEF . Chứng minh khi điểm C di động trên (O) thì điểm H luôn
chạy trên một đường tròn cố định.
Cho đường tròn (O) đường kính AB cố định. Gọi C là một điểm di động trên (O) sao cho C khác A, C khác B và C không nằm chính giữa cung AB . Vẽ đường kính CD của (O). Gọi d là tiếp tuyến của (O) tại A . Hai đường thẳng BC, BD cắt d tại E, F. Gọi H là trực tâm . Chứng minh khi điểm C di động trên (O) thì điểm H luôn chạy trên một đường tròn cố định.
cho đường tròn (O;R) đường kính AB cố định. Đường thẳng d là tiếp tuyến vuông góc với đường tròn tại B. Đương kính MN quay quanh O(MN khác AB và MN không vuông góc với AB). Gọi C,D lần lượt là giao điểm của các đường thẳng AM, AN với d.
a) Chứng minh AM.AC=AN.AD.
b) Gọi K là trung điểm của CD, H là giao điểm của AK và MN. Chứng minh rằng khi MN di động thì H chạy trên một đương cố định.
c) Gọi I là tâm đương tròn ngoại tiếp tam giác MCD. Chứng ming tứ giác AOIK là hình bình hành.
Cho nửa đường tròn (O) đường kính AB = 2R, C là điểm bất kì nằm trên nửa đường tròn sao cho C khác A và AC < CB. Điểm D thuộc cung nhỏ BC sao cho COD = 90. Gọi E là giao điểm của AD và BC, F là giao điểm của AC và BD.
1) Chứng minh bốn điểm C, E,D, F cùng thuộc một đường tròn.
2) Chứng minh FC. FA = FD. FB
3) Gọi I là trung điểm của EF. Chứng minh IC là tiếp tuyến của (O)
4) Hỏi khi C thay đổi thỏa mãn điều kiện bài toán, E thuộc đường tròn cố định nào?
Cho 3 điểm A, B, C cố định theo thứ tự trên đường thẳng d.Đường tròn (O,R) thay đổi nhưng luôn đi qua A,B. Từ C vẽ 2 tiếp tuyến CP, CQ với (O,R) (P,Q là 2 tiếp điểm). Gọi I là trung điểm của đoạn AB, M là giao điểm của OC và PQ. Chứng minh khi đường tròn (O,R) thay đổi nhưng vẫn đi qua A,B thì tâm đường tròn ngoại tiếp tam giác IOM luôn thuộc một đường thẳng cố định.
Cho đường tròn (O) đường kính AB cố định, MN là đường kính di động khác AB và không vuông góc với AB. Đường thẳng d là tiếp tuyến với (O) tại B, Các đường thẳng AM, AN cắt d lần lượt tại C và D. Gọi I là trung điểm của CD , Hlaf giao điểm của AI và MN. Khi MN thay đổi.
a)Chứng minh rằng tích AC.AM không đổi.
b) CMND nội tiếp.
c) Điểm H luôn thuộc 1 đường tròn cố định.
Cho hình vuông ABCD cạnh là x(cm), lấy điểm M bất kì thuộc cạnh AB, Tia CM cắt DA tại E, tia Cz vuông góc với tia CE cắt AB tại F. Gọi N là trung điểm của đoạn thẳng EF
a/ Chứng minh: CE = CF.
b/ Chứng minh 4 điểm D, C, N, E thuộc một đường tròn.
c/ Chứng minh: khi điểm M chạy trên cạnh AB (M không trùng với A và B) thì điểm N luôn chạy trên một đường thẳng cố định
Cho đường tròn (O). Từ điểm M cố định nằm ngoài đường tròn, kẻ các cát tuyến MNP
(N nằm giữa M và P) và hai tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm, A thuộc
nửa mặt phẳng bờ MP chứa điểm O) với đường tròn (O). Gọi I là trung điểm của NP.
a) Chứng minh tứ giác MOIB nội tiếp đường tròn.
b) Chứng minh MB2 = MN. MP
c) Gọi C là giao điểm của BI với đường tròn tâm O. Chứng minh AC // MP
d) Gọi H là giao điểm của MO và AB. Khi cát tuyến MNP thay đổi thì trọng tâm tầm giác ANP chạy trên đường nào?
Cho đường tròn (O) đường kính AB. Gọi C là điểm cố định trên OA. M là điểm di động trên đường tròn. Qua M kẻ đường vuông góc với MC cắt các tiếp tuyến kẻ từ A và B ở D và E. a. Chứng minh rằng tam giác DCE vuông. b. Chứng minh rằng tích AD.BE không đổi khi M di động. c. Chứng minh rằng khi M chạy thì trung điểm I của DE chạy trên một đường thẳng cố định