Giúp mình cách giải luôn nha
Câu 1: Hình thang ABCD (AB // CD) có AC vuông góc BD tại O. Biết AB=3,5 cm; AD=5,2 cm. Gọi M là trung điểm CD. Tính diện tích AMO.
Câu 2: Cho hình thang cân ABCD có đáy nhỏ AB=7cm; BD vuông góc BC. Kẻ BH vuông góc CD(với H thuộc CD). Biết BH=5cm. Tính diện tích ABCD và góc BCD.
Câu 3: Cho hình thang cân ABCD có đáy nhỏ AB=BC= \(\frac{1}{2}\)CD và AC=4cm. Tính góc C và diện tích ABCD.
Câu 4: Cho hình thang cân ABCD có AB//CD, BC=12cm, AC=15cm. Tính góc C và diện tích ABCD.
Câu 5: Cho hình thang vuông ABCD (vuông ở A và B0 có E là trung điểm CD; AE cắt BC tại F. Biết AD=1,5 cm; BC=2,7 cm; AB=2cm. Tính các góc và diện tích của tam giác BEF.
Bài 1: Hình thang ABCD có góc A = góc D = 90 độ, AC vuông góc BD tại O. Biết OA=45cm, OC=25cm. Tính BD,AB,CD
Cho hình thang ABCD có AB//CD góc A băng 90 độ hai đường chéo AC và BD vuông góc với nhau tại O biết AB=4cm , AD=10cm .Tính AC,BD,BC và diện tích hình thang ABCD .
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho hình thang ABCD có góc A=góc D=90 độ, AC vuông góc với BD tại O
a,CM AD2=AB.CD
b,Cho AB=9cm, CD=16cm . Tính diện tích hình thang ABCD
c,Tính OA, OB,OC , OD
Bài 1: Hình thang ABCD có góc A = góc D = 90 độ, AC vuông góc BD tại O. Biết OA=45cm, OC=25cm. Tính BD,AB,CD
Bài1 :Cho hình thang ABCD (AB//CD) ; AC vuông góc với BD ;BH vuông góc với CD tại H; chứng minh
\(\frac{1}{AC^2}+\frac{1}{BD^2}=\frac{1}{BH^2}\)
Anh chị giúp em với ạ:3
Cho hình thang ABCD biết A=D=90 độ và AB<DC Hai đường chéo AC và BD vuông góc với nhau tại O
a,Cho AB=9cm,AD=12cm.Tính
-tỉ số lượng giác của các góc nhọn và cạnh BD của tam giác ADB
-đọ dài các đoạn thẳng AO,DO,AC
-kẻ BH vuông góc với DC tại H.Tính diện tích tam giác DOH
b,Chứng minh BH^2=AB.CD
Cho hình thang ABCD (AB//CD), M và N là trung điểm AC và BD. Kẻ NH vuông góc AD, MH' vuông góc BC. Gọi I là giao điểm cua MH' và NH. Chứng minh rằng IC=ID