Giả sử gọi hình thang cân là ABCD có đáy lớn là CD đáy nhỏ là AB
ta có đường trung bình của hình thang bằng MN= 1/2(AB+CD)
(M là trung điẻm của AD, N là trung điểm của BC)
gọi giao của AC và BD là K từ K kẻ đường thẳng vuông với AB và CD dễ thấy đường thẳng đó đi qua trung điểm I của AB và J của CD
mà K lại vuông nên KI = 1/2 AB
KJ= 1/2 CD
ta có
IJ= 1/2(AB+CD)=MN= AH = 10 cm
Kể AH⊥CDAH⊥CD và AM // BD.
Do AB // MD, AM // BD \Rightarrow AB=MD và AM=BD ( tính chất đoạn chắn )
Ta có AC=BD ( hình thang ABD cân ) , AM = BD \Rightarrow AM=AC
\Rightarrow ΔΔ ACM cân tại A \Rightarrow đường cao AH đồng thời là trung tuyến.
Do AM // BD, AC⊥BD→AM⊥AC→ΔAC⊥BD→AM⊥AC→Δ ACM vuông tại A.
Xét ΔΔ ACM vuông tại A có AH là trung tuyến thuộc cạnh huyền MC
\Rightarrow CM=2AH.
Ta có CM=CD+MD=AB+CD \Rightarrow AB+CD=2AH=2.10=20cm
\Rightarrow đường trung bình của hình thang ABCD ( AB // CD ) dài 10cm.