cho hình thang cân ABCD, đáy AB, CD. Biết AC vuông góc BD, khoảng cách từ A-D là 10. Gọi M, N là trung Điểm của AD, BC. Tính MN.( mình kẻ xong hình như bài cho, sau đó lấy O làm giao điểm AC, BD, kẻ thêm đường phụ EF qua O vuông với AB, DC)
MÌNH CÂN GẤP LẮM, AI BIẾT LÀM HỘ MÌNH VỚI!!! cẢM ƠN
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Cho hình thang cân ABCD(AB//CD), AB=BC và BC vuông góc với BD
a) Chứng minh AC vuông góc với AD
b) Tính số đo các góc hình thang
c) Gọi O là giao điểm của 2 đường chéo. Chứng minh rằng O cách đều 2 cnhj bên và đáy lớn
d) Gọi M là giao điểm cảu AD và Bc. H là hình chiếu của O trên DC. Chứng minh M,H,O thẳng hàng
Cho hình thang ABCD (AB // CD, AB < CD) .Gọi O là giao điểm của AC và BD
a) Chứng minh OA/AC = OB/BD ( làm được r)
b) Qua O kẻ đường thẳng // với AD cắt DC ở E, qua O kẻ đường thẳng // với BC cắt DC ở F. Chứng minh DE = CF
c) Gọi I là giao điểm của các đường thẳng AD và OF, J là giao điểm của các đường thẳng BC và OE. Chứng minh IJ//AB
d) Gọi H là giao điểm của AD và BC, K là trung điểm của EF. Chứng minh : H,O,K thẳng hàng
Cho hình chữ nhật ABCD ( AB > CB). Trên AD, BC lấy E, F sao cho AE= CF.
a) CMR: BE//DF.
b) Gọi O là trung điểm BD. CMR: AC, BD, EF đồng quy.
c) Qua O kẻ đường thẳng d vuông góc BD, đ cắt AB tại M, cắt CD tại N. CMR: MBND là hình thoi.
d) Đường thẳng qua B//MN, đường thẳng qua N//BD cắt nhau tại K. CMR: AC vuông góc CK.
Cho hình thang cân ABCD AB CD, AD BC , có đáy nhỏ AB. Độ dài đường cao BH bằng độ dài đường trung bình MN M thuộc AD, N thuộc BC của hình thang ABCD. Vẽ BE AC E thuộc DC . Gọi O là giao điểm của AC và BD. Chứng minh rằnga MN DE2 b Tam giác DBE vuông cân
Cho tam giác ABC có góc A=90 độ, đường cao AD. Kẻ DN // AB (N thuộc AC), DM //AC (M thuộc AB). Gọi O là giao điểm của AD và MN. E, I, K lần lượt là trung điểm của BC, BD, DC.
a. AD = MN
b. AE vuông góc với MN
c. Tứ giác MNKI là hình thang vuông
Cho hình thang ABCD (AB//CD). Hai đường chéo AC và BD cắt nhau tại O. Tia phân giác của góc DOC cắt DC tại H. Qua H kẻ HM//AC (M thuộc AD và HN//BD (N thuộc BC). Gọi I là giao điểm của HM và BD, K là giao điểm của HN và AC. Chứng minh :
a)OH vuông với IK
b)Tú giác IKNM là hình thang cân
c)Kẻ ML//DB(L thuộc AB). Để tứ giác MLNH là hình vuông thì hình thang ABCD cần phải có điều điện gì
Mai nộp rồi help!!!!!!!
Cho hình thang ABCD ( AB // CD; AB < CD). Gọi I là trung điểm của cạnh BD, K là trung điểm của cạnh AC. Từ I kẻ đường thẳng vuông góc với AD, từ K kẻ đường thẳng vuông góc với BC. Chúng cắt nhau tại O. Chứng minh: tam giác ODC cân