Bài 8: Cho hình thang ABCD ( AB // CD, AD > BC ) có đường chéo AC vuông góc cạnh bên CD; AC là tia phân giác góc BAD và góc D = 60 ĐỘ.
a, CM; ABCD là hình thang cân.
b, Tính độ dài cạnh AD; biết chu vi hình thang bằng 20 cm.
Cho hình thang cân ABCD (AB // CD , AB>CD) có CD=a , A + B = 1/2(C+D) Đường chéo AC vuông góc với cạnh bên BC.
A) Tính các góc của hình thang
B) Chứng minh AC là phân giác góc DAB
Cho hình thang cân ABCD (AB//CD, AB>CD) có CD=a, góc A cộng góc B=1/2 (góc C cộng góc D). Đường chéo AC vuông góc với cạnh bên BC.
a) Tính các góc của hình thang
b) Chứng minh AC là phân giác của góc DAB.
Cho hình thang cân ABCD (AB//CD,AB>CD). CD=a và góc A + góc B=1/2 (góc C và D).Đường chéo AC vuông góc với cạnh bên AC. a) Tính các góc của hình thang
b)CM AC la phân giác của góc DAB
c)Tính diện tích hình thang
1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.
2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang
3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.
4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=5 cm. tính CD
5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.
a) tính các góc của hình thang
b) biết AB=3cm. tính độ dài các cạnh BC,CD.
6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.
a) chứng minh ằng HD=KC.
7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.
a) tú giác BEDC là hình gì?Vì sao?
b)Chứng minh BE=ED=DC.
c) biết góc A=500. Tính các góc của tứ giác BEDC.
8. cho tam giác đều ABC, hai đường cao BN,CM
a) chứng minh tứ giác BMNC là hình thang cân
b) Tính chu vi của hình thang BMNC là hình thang cân
Bài 1: Cho hình thang cân ABCD có AB//CD, đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác góc D. Tính chu vi của hình thang, biết BC=3cm.
Bài 2: Cho tam giác ABC cân tại A, các đường phân giác BD,CE (D thuộc AC, E thuộc AB)
a) Chứng minh BEDC là hình thang cân
b) Tính các góc của hình thang cân BEDC, biết góc C=50 độ
Bài 3: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:
a) OA=OB , OC=OD
b) EO là đường trung trực của hai đáy hình thang ABCD.
Các bạn giải giúp mình bài này nhé. Cảm ơn các bạn.
Bài 1: Cho hình thang cân ABCD có AB//CD, đường chéo DB vuông góc với cạnh bên BC, DB là tia phân giác góc D. Tính chu vi của hình thang, biết BC=3cm.
Bài 2: Cho tam giác ABC cân tại A, các đường phân giác BD,CE (D thuộc AC, E thuộc AB)
a) Chứng minh BEDC là hình thang cân
b) Tính các góc của hình thang cân BEDC, biết góc C=50 độ
Bài 3: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:
a) OA=OB , OC=OD
b) EO là đường trung trực của hai đáy hình thang ABCD.
Các bạn giải giúp mình bài này nhé. Cảm ơn các bạn.
cho hình thang ABCD ( AD // BC, AD > BC ) có đường chéo AD vuông góc với cạnh bên CD; AC là tia phân giác góc BAD và góc D = 60 độ.
A, CM: ABCD là thang cân.
B, Tính độ dài của cạnh AD; biết chu vi hình thang bằng 20 CM.
Cho hình thang cân ABCD (AB//CD) có đường chéo BD vuông góc với cạnh bên BC và đồng thời DB là tia phân giác của A D C ^ .
a) Tính các góc của hình thang cân ABCD.
b) Biết BC = 6 cm, tính chu vi và diện tích của hình thang cân ABCD